
MMSSHH LLiibbrraarryy –– MMSS OOffffiiccee AAuuttoommaattiioonn

DDooccuummeennttaattiioonn
VVeerrssiioonn vv22001177--0055

FFoorr MMSS AAcccceessss 22000077 TThhrroouugghh MMSS AAcccceessss 22001166
VVBBAA CCooddee && DDooccuummeennttaattiioonn bbyy MMaatttthheeww SS HHaarrrriiss

Copyright (c) 2014-2017 by Matthew S. Harris

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts.

The Didjiman.com graphics, "Didjiman.com", and the name "Didjiman" are part of the original author's identity and may not
be reproduced except as part of the original Copyright notices required by the GNU Free Documentation License, the GNU
Lesser General Public License and GNU General Public License.

A copy of the documentation license is included in the section entitled "GNU Free Documentation License" (page 70).

This code and documentation is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

The Visual Basic for Applications (VBA) code in this document is licensed to you under the terms of the GNU Lesser
General Public License (LGPL), which incorporates and extends the GNU General Public License (GPL). Copies of the
GNU LGPL and GNU GPL are included in this document (pages 75 and 78, respectively).

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED IN THE LICENSE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

MS Office, MS Access, MS Word, MS Outlook, MS Excel, Visual Basic for Applications (VBA) are copyrighted names belonging to Microsoft Corporation.

MSH Library – MS Office Automation

Table of Contents
Originating Developer.. 4

Introduction .. 5

Overview ... 6

ofcApp_Excel – The MS Excel Library Module .. 7
Public Constants in OFCAPP_EXCEL .. 8
XL_GetNewInstance ... 9
XL_CloseInstance ...10
XL_WindowMaximize ...11
XL_WindowMinimize ..12
XLWrkBk_Open ..13
XLWrkBk_OpenCSV ...14
XL_ListWorkbooks ...15
XL_ListWorkSheets ..16
XLWorkSheet_Rows_Delete ..17
XLWorkSheet_Rows_Insert ...18
XLActiveWorkbook_SaveAs_CSV ..19
XLActiveWorkbook_SaveAs_XLSX ..20
XLActiveWorkbook_SaveAs_XLSM ...21
XL_PrintWorkSheetAs_PDF ..22

ofcApp_Word – The MS Word Library Module ... 23
Public Constants in OFCAPP_WORD...24
Word_GetNewInstanceHandle ..25
Word_CloseInstanceHandle ..26
wdDoc_GetExistingDocHandle ...27
wdDoc_GetNewDocHandle..28
wdDoc_CloseDocument ..29
wdDoc_SaveAs ...30
Word_WindowMaximize ...31
Word_WindowMinimize ...32
wdDoc_SendText2Document ..33
wdDoc_SendText2NewDocument ..34
wdDoc_SendEnvelope ...36
wdDoc_Insert_ImageFile ...37
MailMerge_WriteOutputFile_AsText ...38
MailMerge_SendMailMerge2Word_FromText ..40
MailMerge_Execute_FromText ..41
MailMerge_WriteOutputFile_AsDB ...42
MailMerge_SendMailMerge2Word_FromDB ..44
MailMerge_Execute_FromDB ..45

ofcApp_Outlook – The MS Outlook Library Module .. 46
Public Constants in OFCAPP_OUTLOOK ...46
Outlook_GetNewInstanceHandle ..47

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 4 of 85

Outlook_CloseInstanceHandle ...48
Outlook_CreateEMail ...49

Code Listings ... 52
MS Excel: ofcApp_Excel ..52
MS Word: ofcApp_Word ..57
MS Outlook: ofcApp_Outlook ...67

GNU Free Documentation License (FDL) ... 70

Software Licenses ... 75
GNU Lesser General Public License (LGPL) ...75
GNU General Public License (GPL) ..78

Originating Developer

MSH Library ï MS Office Automation was programmed and documented by Matthew S. Harris. Matthew is

a database designer, VBA developer (all MS Office applications), and Visual Studio developer. Matthew has 25+
years experience designing and developing business and scientific research applications. Matthew is also the author
or contributing author of over 20 how-to books on topics ranging from hard-disk compression to advanced
programming in MS Office.

Matthew may be contacted by e-mail at matthew@didjiman.com or through his website www.didjiman.com/business.

mailto:matthew@didjiman.com
http://www.didjiman.com/business

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 5 of 85

Introduction
MSH Library ï MS Office Automation contains code needed for the most common actions and tasks that
arise when automating interaction among components of the Microsoft Office suite, specifically MS Word,
MS Excel, and MS Outlook. This code library was developed in response to practical needs over many years
of programming database applications in MS Access VBA.

In particular, the procedures in these code libraries are intended to provide simple procedure calls with only
one or two arguments to perform common tasks ï such as opening and saving files ï to reduce the
complexity of these tasks for the user-programmer. For example, actions such as performing a Save As
operation involve several constant values and several argument values. The procedures in these code
libraries eliminate the need for a programmer to remember the values of the constants involved, and use the
common default values for the various arguments involved in the specific command.

The complete source code for MSH Library ï MS Office Automation is distributed in an MS Access file

named MSH Library ï MS Office Automation v2017-05.accdb., which may be

downloaded from http://www.didjiman.com/business/cv-swareVBA.htm.

This document describes the current released version (v2017-05) of the MSH Library ï MS Office Automation library.

The following sections of this document cover these topics:

¶ Overview ï an explanation of how the MSH Library ï MS Office Automation library is organized.

¶ Library Modules ï A description of the contents of each library module, listing all of the available procedures and functions, their syntax, and
examples of their use.

¶ Documentation & Source Code Licenses ï This document, the source code in this document, and the source code contained in the MSH

Library ï MS Office Automation v2017-05.accdb database are released to you under one or more of the GNU licenses. Each

pertinent GNU license is included in full at the end of this document. You agree to be bound by these license agreements at such time as you utilize
the VBA source code, and/or distribute this or new versions of the code and/or this document.

The next section provides an overview of the MS Office Automation library.

Librar y Dependencies
Some of the components in this library have dependencies to other MSH Libraries.

MSH Library - MS Office Automation has these dependencies:

¶ This library uses a File Picker dialog, and therefore requires a reference to the MS Office Object Library.

¶ The libFiles module from MSH Library ï Tools & Utilities. The libFiles library contains procedures to test for the existence of files, folders,

and other common tasks involving disk files.

If you download the MSH Library ï MS Office Automation v2017-05.accdb from http://www.didjiman.com/business/cv-

swareVBA.htm, all dependencies and references are already inserted, and the code will compile.

NOTE
This document assumes you are familiar
with Visual Basic for Applications (VBA)
ï its data types, syntax, and built-in
objects and classes.

This document also assumes familiarity
with the objects in Microsoft Office
applications, specifically MS Access, MS
Word, MS Excel, and MS Outlook.

All code in this library was written and
tested in MS Access.

http://www.didjiman.com/business/cv-swareVBA.htm
http://www.didjiman.com/business/cv-swareVBA.htm
http://www.didjiman.com/business/cv-swareVBA.htm

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 6 of 85

Overview
The MS Office Automation library consists of several procedures and functions contained in standard modules.
The library contains three modules, one each for procedures and functions related to specific MS Office
applications: MS Excel, MS Word, and MS Outlook.

To use the library procedures and functions, import the relevant module into your project, or cut-and-paste the
code you want to use into your own modules.

All of the code in the MS Office Automation library is written to avoid requiring an explicit reference to an MS
Office application. That is to say, all of the code in this library is late-binding. Avoiding explicit references to
other MS Office application object libraries makes this code version-independent, as applications containing
explicit MS Office object library references do not always update the object library reference version
automatically. The late-binding code provides compatibility with a large range of MS Office versions.

The modules of the library are:

¶ Microsoft Excel (ofcApp_Excel) ï contains code to create instances of Excel, insert and delete rows,
open CSV files, create CSV files, create PDF files, among others.

¶ Microsoft Word (ofcApp_Word) ï contains code to create instances of Word, create envelopes, run
mail-merge operations, create new documents, insert text into documents, and other tasks.

¶ Microsoft Outlook (ofcApp_Outlook) ï contains code to create instances of Outlook, and to create
new e-mails and send, save, or display them.

Although the code in this library was written and developed in MS Access VBA, it should be usable in other MS
Office applications. The code in the MS Office Automation library should be usable in any version of MS Office 2007 or higher (it has been tested in MS
Access 2007 and MS Access 2016).

Now that you have a sense of the MS Office Automation library's structure and features, the next three sections of this document discuss each of the library
modules and their contents in detail, showing the syntax for using each procedure or function, code fragments illustrating their use, and describing special
issues related to using the library code. A complete listing of the code in each library is in the section titled Code Listings on page 52.

NOTE

The original designer (Matthew S Harris)
strongly believes that programs
controlling instances of MS Excel, Word,
and Outlook should be working in their
own separate instances of these
applications, in order to avoid
accidentally interfering with any work
sessions created by a user in any of
these applications.

Therefore, although all three of the
libraries presented here contain
procedures to create a new instance of
an application (MS Excel, MS Word, MS
Outlook), they do not typically include
procedures to get a handle for any
existing instances of these applications.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 7 of 85

ofcApp_Excel – The MS Excel Library Module
The module named ofcApp_Excel contains code for carrying out common tasks when programmatically controlling MS Excel with VBA code from

another application.

The ofcApp_Excel module contains these procedures/functions:

¶ XL_GetNewInstanc e ï creates a new instance of MS Excel, and returns a True/False value indicating the success of the operation.

¶ XL_CloseInstance ï closes an instance of MS Excel, and enables the caller to choose whether to save or not save any changes to workbooks

which may be open in that instance.

¶ XL_WindowMaximize ï maximizes the window of an MS Excel instance.

¶ XL_WindowMinimize ï minimizes the window of an MS Excel instance.

¶ XLWrkBk_Open ï opens a specified workbook in an instance of MS Excel.

¶ XLWrkBk_OpenCSV ï opens a CSV file in MS Excel.

¶ XL_ListWorkbooks ï creates a list (in a string array) of all workbooks open in a specified instance of Excel.

¶ XL_ListWorkSheets ï creates a list (in a string array) of all worksheets in a specified workbook.

¶ XLWorkSheet_Rows_Delete ï deletes one or more rows from a specific worksheet in an MS Excel workbook.

¶ XLWorkSheet_Rows_Insert ï inserts one or more rows into a specific worksheet in an MS Excel workbook.

¶ XLActiveWorkbook_SaveAs_CSV ï saves a worksheet as a CSV (Comma Separated Values) file.

¶ XLActiveWorkbook_SaveAs_XLSX ï saves a workbook in the standard MS Excel format.

¶ XLActiveWorkbook_SaveAs_ XLSM ï saves a workbook in the macro-enabled MS Excel format.

¶ XL_PrintWorkSheetAs _PDF ï saves a worksheet as a PDF document.

The next section discusses the public constants declared in ofcApp_Excel, followed by sections describing the syntax for using each procedure and

function in the library module.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 8 of 85

Public Constants in OFCAPP_EXCEL
The functions and procedures used to work with MS Excel have many statements that use constant values declared in Excel VBA. Because all of the code
in the MS Office Automation library is late-binding and does not use an explicit reference to the Excel VBA library, the Excel constants are not available.

To make the MS Office Automation library code more readable and easier to maintain, no literal values are used to replace the Excel constants. Instead, the

ofcApp_Excel module declares several public constants as an enumeration data-type to replicate the constant values declared in the Excel object

library.

The convention in MS Excel is that all Excel constants are declared with a prefix of "xl". In the ofcApp_Excel module, the enumeration constant follows

the spirit of the convention by declaring all of the Excel-related constants with a prefix of "vxl" (the v is for "virtual"). The vxl prefix preserves code

readability, and ï in the event that a reference to the Excel object library is added to your project ï prevents the enumerated constants declared in

ofcApp_Excel from conflicting with the Excel object library constants.

The "virtual" Excel constants in the vxlExcelConstants enumeration in ofcApp_Excel are:

¶ vxlDelimited ï specifies a delimited file format

¶ vxlDoubleQuote ï specifies using double-quote mark for CSV files

¶ vxlCSV ï specifies that a worksheet is saved as CSV format

¶ vxlUp ï specifies that rows are moved up when deleting

¶ vxlTypePDF ï specifies that a worksheet save goes to a PDF formatted file

¶ vxlQualityMinimum ï specifies minimum quality for PDF (small file size for email, probably not going to be printed)

¶ vxlMinimized ï the value that specifies the Excel window is to be minimized

¶ vxlMaximized ï the value that specifies the Excel window is to be maximized

¶ vxlDown ï specifies that rows are moved down when inserting rows

¶ vxlFormatFromLeftOrAbove ï specifies the direction of formatting for various operations

¶ vxlOpenXMLWorkbook ï specifies xlsx (the MS Excel 2007 and higher standard file format) when performing a Save As operation

¶ vxlOpenXMLWorkbookMacroEnabled ï specifies xlsm (macro enabled) format when performing a Save As operation

The enumerated constants in the preceding list all duplicate constants declared in the MS Excel VBA library. The ofcApp_Excel module declares a few

more constants not actually defined in the MS Excel VBA library. These additional constants are for some of the file extensions used by Excel to determine

various file formats. The following constants are used primarily to ensure that the Save As procedures in ofcApp_Excel have file extensions compatible

with the desired file format:

¶ vxlExcelStandardFileExtension ï standard Excel file extension (not actually declared in the Excel object library)

¶ vxlExcelCSVFileExtension ï CSV file extension (not actually declared in the Excel object library)

¶ vxlExcelMacroEnabledFileExtension ï Excel macro-enabled file extension (not actually declared in the Excel object library)

Refer to the ofcApp_Excel module listing on page 52 to see the constant declarations. The following sections describe each procedure and function of

the ofcApp_Excel module.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 9 of 85

XL_GetNewInstance
Use the XL_GetNewInstance function to create a new instance of MS Excel, and assign it to an object variable. XL_GetNewInstance returns True

if the Excel instance was successfully created, and False otherwise.

The declaration of XL_GetNewInstance is:

Public Function XL_GetNewInstance(ByRef XLHandle As Object, _

 Optional WindowStyle As vxlExcelConstants = vxlMinimized) As Boolean

Notice that the XLHandle argument is passed by reference. If the function is successful, XLHandle contains a reference to the new instance of Excel

and returns True. If, for some reason, the function is not successful in creating a new instance of Excel, XLHandle will be Nothing, and the function will

return False.

The optional WindowStyle argument is of type vxlExcelConstants, and is expected to contain one of the values vxlMinimized or

vxlMaximized to specify whether the new Excel instance is opened in a maximized or minimized window. If omitted, the default is to create the new

Excel instance in a minimized window.

This code fragment shows an example of XL_GetNewInstance:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 'code that does things with the new instance of Excel

Else

 'code to deal with the failure to create an instance of Excel

End If

In the preceding code fragment, objExcel is declared as a generic Object type. If the XL_GetNewInstance function is successful, objExcel will

contain a reference to the newly-created Excel instance.

NOTES:

¶ The XL_GetNewInstance function contains error-handling code that displays an error message in a MsgBox in the case that creating a new

instance of Excel fails. This relieves the user-programmer from having to write her own error-handling messages.

¶ The XL_GetNewInstance function makes the new instance of Excel visible in a minimized window. If any subsequent code that manipulates the

instance fails with a runtime error, or if the user-programmer does not explicitly close the Excel instance, application users will be able to see the
instance in the system tray, and close it manually. Otherwise, unclosed instances of Excel are invisible, and constitute a major memory leak in the
application.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XL_GetNewInstance.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 10 of 85

XL_CloseInstance
Use the XL_CloseInstance procedure to close an instance of MS Excel (and all open workbooks in the instance). You use an argument to specify

whether workbooks should be closed with or without saving any changes.

The declaration of XL_CloseInstance is:

Public Sub XL_CloseInstance(ByRef XLHandle As Object, bSave As Boolean)

Notice that XLHandle is passed by reference (ByRef). When XL_CloseInstance has finished closing all of the workbooks in the Excel instance,

XLHandle is set to Nothing. The bSave argument specifies whether or not changes to workbooks open in the Excel instance are saved.

This code fragment shows an example of XL_CloseInstance:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 'code that does things with the new instance of Excel

 XL_CloseInstance objExcel, False

Else

 'code to deal with the failure to create an instance of Excel

End If

After whatever tasks using the Excel instance referenced by objExcel are complete, the Excel instance is closed with a call to the

XL_CloseInstance procedure. In this example, the value of the bSave argument is False, so all workbooks in the Excel instance are closed without

saving any changes. The objExcel variable is set to Nothing after closing the Excel instance.

Usually, you should close any Excel instances you create as soon as you are done with them.

NOTE: A runtime error will occur if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XL_CloseInstance.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 11 of 85

XL_WindowMaximize
The XL_WindowMaximize procedure maximizes the MS Excel window. This procedure is useful if you intend to leave Excel open for your application's

user to interact with.

The declaration of XL_WindowMaximize is:

Public Sub XL_WindowMaximize(ByRef XLHandle As Object)

This code fragment shows an example of XL_WindowMaximize:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 'code that does things with the new instance of Excel

 XL_WindowMaximize objExcel

Else

 'code to deal with the failure to create an instance of Excel

End If

In this code fragment example, the programmer wants to leave Excel open for a user to interact with, after having performed some tasks with the Excel

instance. XL_WindowMaximize makes the Excel window the size of the full screen and there is no call to the XL_CloseInstance procedure, leaving

the Excel instance open.

NOTE: A runtime error will occur if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XL_WindowMaximize.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 12 of 85

XL_WindowMinimize
The XL_WindowMinimize procedure minimizes the MS Excel window. This procedure is useful to make your Excel instance as unobtrusive as possible.

The declaration of XL_WindowMinimize is:

Public Sub XL_WindowMinimize(ByRef XLHandle As Object)

This code fragment shows an example of XL_WindowMinimize:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 XL_WindowMinimize objEx cel

 'code that does things with the new instance of Excel

 XL_CloseInstance objExcel, True

Else

 'code to deal with the failure to create an instance of Excel

End If

In this code fragment example, the programmer wants Excel to be unobtrusive while her application is working with the Excel instance. The Excel instance
is minimized while it is in use, and then eventually closed.

NOTE: A runtime error will occur if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XL_WindowMinimize.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 13 of 85

XLWrkBk_Open
The XLWrkBk_Open procedure opens an existing Excel workbook file in a previously initialized instance of MS Excel.

The declaration of XLWrkBk_Open is:

Public Sub XLWrkBk_Open(ByRef XLHandle As Object, sFileName As String)

The XLHandle argument is an object variable containing a reference to a MS Excel instance, and the sFileName argument is a string literal or variable

value containing the file name and a fully qualified path.

This code fragment shows an example of XLWrkBk_Open:

Dim objExcel As Object

Dim strFName As String

If XL_GetNewInstance(objExcel) Then

 XLWrkBk_Open objExcel, "C: \ Users \ User \ Documents \ Fiscal201 7.xls x"

 strFName = "C:\Users\User\Documents\Sales Q2 2017.xlsx"

 XLWrkBk_Open objExcel, strFName

 XL_CloseInstance objExcel, True

Else

 'code to deal with the failure to create an instance of Excel

End If

In this code fragment example, after getting a new instance of MS Excel, a workbook named Fiscal2017.xlsx is opened using a literal string for the

workbook's file name. Notice that the fully qualified path (C:\Users\User\Documents\) is included with the file name. A second workbook is opened

in the same Excel instance, this time using a string variable (strFName) to pass the path and file name.

NOTES:

¶ A runtime error will occur if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

¶ A runtime error will occur if the path or file do not exist, or are invalid.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XLWrkBk_Open.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 14 of 85

XLWrkBk_OpenCSV
The XLWrkBk_OpenCSV function opens an existing CSV (Comma Separated Values) file in a previously initialized instance of MS Excel, and returns the

worksheet name assigned by Excel as the function's result.

The declaration of XLWrkBk_OpenCSV is:

Public Function XLWrkBk_OpenCSV(ByRef XLHandle As Object, strSourceName As String) As String

The XLHandle argument is an object variable containing a reference to a MS Excel instance, and the strSourceName argument is a string literal or

variable value containing the file name and a fully qualified path.

This code fragment shows an example of XLWrkBk_OpenCSV:

Dim objExcel As Object

Dim strFName As String

Dim strWSName1 As String

Dim strWSName2 As String

If XL_GetNewInstance(objExcel) Then

 strWS Name1 = XLWrkBk_OpenCSV(objExcel, "C: \ Users \ User \ Documents \ Fiscal201 7.csv "

 strFName = "C:\Users\User\Documents\Sales Q2 2017.csv"

 strWS Name2 = XLWrkBk_OpenCSV(objExcel, strFName)

 XL_CloseInstance objExcel, True

Else

 'code to deal with the failure to create an instance of Excel

End If

In this code fragment example, after getting a new instance of MS Excel, a CSV file named Fiscal2017.csv is opened using a literal string for the file

name. Notice that the fully qualified path (C:\Users\User\Documents\) is included with the file name. A second CSV file is opened in the same Excel

instance, this time using a string variable (strFName) to pass the path and file name.

NOTES:

¶ A runtime error will occur if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

¶ A runtime error will occur if the path or file do not exist, or are invalid.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XLWrkBk_OpenCSV.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 15 of 85

XL_ListWorkbooks

The XL_ListWorkbooks function returns an array of strings; each element in the array contains the name of a workbook open in the specified Excel

instance. If no workbooks are open, XL_ListWorkbooks returns an empty string.

The declaration of XL_ListWorkbooks is:

Public Function XL_ListWorkbooks(ByRef XLHandle As Object) As Variant

XLHandle is a reference to a previously initialized instance of Excel. The return value is a Variant so that the function may return either an empty string

or an array of strings.

This code fragment shows an example of XL_ListWorkbooks:

 Dim objXL As Object

 Dim sName As String

 Dim sList As Variant

 Dim k As Long

 If Not XL_GetNewInstance(objXL) Then Exit Sub

 sName = "C:\Users\User\Documents\Sales 1stQ 2017.xlsx"

 XLWrkBk_Open objXL, sName

 sName = "C:\Users\User\Documents\Sales 2ndQ 2017.xlsx"

 XLWrkBk_Open objXL, sName

 sList = XL_ListWorkbooks(objXL)

 If TypeName(sList) = "String()" Then

 For k = LBound(sList) To UBound(sList)

 Debug.Print sList(k)

 Next

 End If

The preceding code example creates a new instance of Excel, and opens two workbooks in the same instance. A call to XL_ListWorkbooks is made,

and its result is assigned to the sList variable (a Variant). The VBA TypeName function is used to determine whether sList contains an array of

strings; if it does, a For...Next loop iterates the contents of the array, printing each array element (a workbook name) in the Immediate window. If the

instance of Excel does not have any open workbooks, sList contains an empty string and the loop does not execute.

NOTES:

¶ A runtime error will occur if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XL_ListWorkbooks.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 16 of 85

XL_ListWorkSheets

The XL_ListWorkSheets function returns an array of strings; each element in the array contains the name of a worksheet in a specified workbook. If no

worksheets exist in the workbook, XL_ListWorkSheets returns an empty string.

The declaration of XL_ListWorkSheets is:

Public Function XL_ListWorkSheets(ByRef XLHandle As Object, sWrkBkName As String) As Variant

XLHandle is a reference to a previously initialized instance of Excel. sWrkBkName is a string containing the name of a workbook open in the specified

Excel instance. The return value is a Variant so that the function may return either an empty string or an array of strings.

This code fragment shows an example of XL_ListWorkSheets:

 Dim objXL As Object

 Dim sSheets As Variant

 Dim k As Long

 sSheets = XL_ListWorkSheets(objXL, "Sales 1stQ 2017 .xlsx ")

 If TypeName(sSheets) = "String()" Then

 For k = LBound(sSheets) To UBound(sSheets)

 Debug.Print sSheets(k)

 Next

 End If

The preceding code example presumes that an instance of Excel has already been created and is referenced by objXL, and that a workbook named

"Sales 1stQ 2017.xlsx" has been opened in that instance.

A call to XL_ListWorkSheets is made, and its result is assigned to the sSheets variable (a Variant). The VBA TypeName function is used to

determine whether sSheets contains an array of strings; if it does, a For...Next loop iterates the contents of the array, printing each array element (a

worksheet name) in the Immediate window. If the workbook does not have any worksheets, sSheets contains an empty string and the loop does not

execute.

NOTES:

¶ A runtime error will occur if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

¶ A runtime error will occur if the sWrkBkName argument does not contain the name of a workbook open in the Excel instance.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XL_ListWorkSheets.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 17 of 85

XLWorkSheet_Rows_Delete
The XLWorkSheet_Rows_Delete procedure deletes one or more rows from a specified worksheet in the active workbook.

The declaration of XLWorkSheet_Rows_Delete is:

Public Sub XLWorkSheet_Rows_Delete(ByRef XLHandle As Object, sWorkSheet As String, _

 iRowStart As Long, iRowEnd As Long)

The XLHandle argument is an object variable containing a reference to a MS Excel instance. The sWorkSheet argument is a string value containing the

name of a worksheet in the active workbook. The iRowStart and iRowEnd arguments are each a Long integer, and specify the start and end number

of the rows to delete.

This code fragment shows an example of XLWorkSheet_Rows_Delete:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 XLWrkBk_Open objExcel, "C:\Users\User\Documents\Fiscal2017.xlsx"

 XLWorkSheet_Rows_Delete obj Excel, "Sheet1", 2, 4

 XL_CloseInstance objExcel, True

Else

 'code to deal with the failure to create an instance of Excel

End If

This code fragment example creates a new instance of MS Excel, and then opens a workbook named Fiscal2017.xlsx. The newly opened workbook

becomes the active workbook in the Excel instance referenced by objExcel. The call to XLWorkSheet_Rows_Delete deletes rows 2 through 4 in a

worksheet named "Sheet1".

NOTES:

¶ To delete only one row, use the same value for the start and end of the range to be deleted. For example, if the start and end arguments are both 2,
then only row 2 will be deleted.

¶ The range of rows to be deleted is inclusive. In the code fragment example above, rows 2 through 4 are deleted ï a total of 3 rows (2,3,4).

¶ A runtime error will occur if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

¶ A runtime error will occur if the specified worksheet does not exist.

¶ A runtime error will occur if the row start argument is greater than the row end argument.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XLWorkSheet_Rows_Delete.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 18 of 85

XLWorkSheet_Rows_Insert
The XLWorkSheet_Rows_Insert procedure inserts one or more rows into the specified worksheet in the active workbook.

The declaration of XLWorkSheet_Rows_Insert is:

Public Sub XLWorkSheet_Rows_Insert(ByRef XLHandle As Object, sWorkSheet As String, _

 iRowStart As Long, iRowEnd As Long)

The XLHandle argument is an object variable containing a reference to a MS Excel instance. The sWorkSheet argument is a string value containing the

name of a worksheet in the active workbook. The iRowStart and iRowEnd arguments are each a Long integer, and specify the end and start number

of the rows to insert.

This code fragment shows an example of XLWorkSheet_Rows_Insert:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 XLWrkBk_Open objExcel, "C:\Users\User\Documents\Fiscal2017.xlsx"

 XLWorkSheet_Rows_Insert obj Excel, "Sheet1", 2, 4

 XL_CloseInstance objExcel, True

Else

 'code to deal with the failure to create an instance of Excel

End If

This code fragment creates a new instance of MS Excel, and then opens a workbook named Fiscal2017.xlsx. The newly opened workbook becomes

the active workbook in the Excel instance referenced by objExcel. The call to XLWorkSheet_Rows_Insert inserts three rows starting at row 2 in a

worksheet named "Sheet1". Existing rows are moved down.

NOTES:

¶ To insert only one row, use the same value for the start and end arguments. For example, if both the start and end arguments are 3, then one row is
inserted at row 3.

¶ The range of rows to be inserted is inclusive. In the code fragment example above, rows 2 through 4 are inserted ï a total of 3 rows (2,3,4) ï and
existing rows are moved down to make room for the inserted rows.

¶ A runtime error occurs if the XLHandle argument does not contain a valid reference to an instance of MS Excel.

¶ A runtime error will occur if the named worksheet does not exist.

¶ A runtime error will occur if the row start argument is greater than the row end argument.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XLWorkSheet_Rows_Insert.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 19 of 85

XLActiveWorkbook_SaveAs_CSV
The XLActiveWorkbook_SaveAs_CSV procedure saves the active worksheet of the active workbook as a CSV (Comma Separated Values) file.

The declaration of XLActiveWorkbook_SaveAs_CSV is:

Public Sub XLActiveWorkbook_SaveAs_CSV(XLHandle As Object, sFileName As String)

The XLHandle argument is an object variable containing a reference to a MS Excel instance. The sFileName argument is a string value containing a file

name and a fully qualified path; it is the destination of the Save As action.

This code fragment shows an example of XLActiveWorkbook_SaveAs_CSV:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 XLWrkBk_Open objExcel, "C:\Users\User\Documents\Fiscal2017.xlsx"

 XLActiveWorkbook_SaveAs_CSV objExcel, "C: \ Users \ User \ Documents \ SalesQ3.csv"

 XL_CloseInstance objExcel, False

Else

 'code to deal with the failure to create an instance of Excel

End If

This code fragment creates a new instance of MS Excel, and then opens a workbook named Fiscal2017.xlsx. The newly opened workbook becomes

the active workbook in the Excel instance. The call to XLActiveWorkbook_SaveAs_CSV saves the active worksheet of the workbook as a CSV file.

NOTES:

¶ If the sFileName argument does not have the .csv file extension, or has an extension other than .csv, then this procedure appends the .csv

file extension.

¶ If the sFileName argument duplicates an existing file name, the existing file may be over-written without warning.

¶ By default, in a newly opened workbook, the first worksheet is the active sheet. If you want to save a worksheet other than the default worksheet,
you will need to write code to select the desired worksheet and make it active.

¶ After completing the Save As to CSV format, the open workbook will be in memory as a CSV file. Close it without saving changes to preserve the
format of the original workbook and to prevent data loss from worksheets not saved by the Save As to CSV format operation.

¶ A runtime error will occur if the XLHandle argument does not reference a valid instance of MS Excel.

¶ A runtime error will occur if the path included in the sFileName argument is not valid, or if the file name itself is not valid.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XLActiveWorkbook_SaveAs_CSV.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 20 of 85

XLActiveWorkbook_SaveAs_XLSX

The XLActiveWorkbook_SaveAs_XLSX procedure saves the active workbook in the standard Excel file format (.xlsx). Use this procedure to save a

newly created workbook, or to save a workbook under a new name and/or in a new location.

The declaration of XLActiveWorkbook_SaveAs_XLSX is:

Public Sub XLActiveWorkbook_SaveAs_XLSX(XLHandle As Object, sFileName As String)

The XLHandle argument is an object variable containing a reference to a MS Excel instance. The sFileName argument is a string value containing a file

name and a fully qualified path; it is the destination of the Save As action.

This code fragment shows an example of XLActiveWorkbook_SaveAs_XLSX:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 XLWrkBk_Open objExcel, "C:\Users\User\Documents\Fiscal2017.xlsx"

 XLActiveWorkbook_SaveAs_ XLSX objExcel, "C: \ Users \ User \ Documents \ SalesQ3 "

 XL_CloseInstance objExcel, True

Else

 'code to deal with the failure to create an instance of Excel

End If

This code fragment example creates a new instance of MS Excel, and then opens a workbook named Fiscal2017.xlsx. The newly opened workbook

becomes the active workbook in the Excel instance. The call to XLActiveWorkbook_SaveAs_XLSX saves the active workbook as a standard Excel.

.xlsx file.

NOTES:

¶ If the sFileName argument does not have the .xlsx file extension, or has an extension other than .xlsx, then this procedure appends the

.xlsx file extension.

¶ If the sFileName argument duplicates an existing file name, the existing file may be over-written without warning.

¶ A runtime error will occur if the XLHandle argument does not reference a valid instance of MS Excel.

¶ A runtime error will occur if the path included in the sFileName argument is not valid, or if the file name itself is not valid.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XLActiveWorkbook_SaveAs_XLSX.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 21 of 85

XLActiveWorkbook_SaveAs_XLSM
The XLActiveWorkbook_SaveAs_XLSM procedure saves the active workbook in the Excel macro-enabled file format (.xlsm). Use this procedure to

save a workbook that contains VBA code modules, whether the workbook has been newly created or you just wish to save the workbook under a new name
and/or in a new location.

The declaration of XLActiveWorkbook_SaveAs_XLSM is:

Public Sub XLActiveWorkbook_SaveAs_XLSM(XLHandle As Object, sFileName As String)

The XLHandle argument is an object variable containing a reference to a MS Excel instance. The sFileName argument is a string value containing a file

name and a fully qualified path; it is the destination of the Save As action.

This code fragment shows an example of XLActiveWorkbook_SaveAs_XLSM:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 XLWrkBk_Open objExcel, "C:\Users\User\Documents\Fiscal2017.xlsx"

 XLActiveWorkbook_SaveAs_ XLSM objExcel, "C: \ Users \ User \ Documents \ SalesQ3.xlsm "

 XL_CloseInstance objExcel, True

Else

 'code to deal with the failure to create an instance of Excel

End If

This code fragment creates a new instance of MS Excel, and then opens a workbook named Fiscal2017.xlsx. The newly opened workbook becomes

the active workbook in the Excel instance. The call to XLActiveWorkbook_SaveAs_XLSM saves the active workbook as a macro-enabled Excel.

.xlsm file.

NOTES:

¶ If the sFileName argument does not have the .xlsm file extension, or has an extension other than .xlsm, then this procedure appends the

.xlsm file extension.

¶ If the sFileName argument duplicates an existing file name, the existing file may be over-written without warning.

¶ A runtime error will occur if the XLHandle argument does not reference a valid instance of MS Excel.

¶ A runtime error will occur if the path included in the sFileName argument is not valid, or if the file name itself is not valid.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XLActiveWorkbook_SaveAs_XLSM.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 22 of 85

XL_PrintWorkSheetAs_PDF
The XL_PrintWorkSheetAs_PDF procedure saves a specific worksheet of the active workbook as a PDF document file. This procedure is most useful

to create PDF versions of charts or worksheets for attachment to emails.

The declaration of XL_PrintWorkSheetAs_PDF is:

Public Sub XL_PrintWorkSheetAs_PDF(ByRef XLHandle As Object, sSheet As String, sOutName As String)

The XLHandle argument is an object variable containing a reference to a MS Excel instance. The sSheet argument is a string value specifying the name

of the worksheet in the active workbook that is to be printed as a PDF file. The sOutName argument is a string value containing a file name and a fully

qualified path; it is the name and location of the new PDF file.

This code fragment shows an example of XL_PrintWorkSheetAs_PDF:

Dim objExcel As Object

If XL_GetNewInstance(objExcel) Then

 XLWrkBk_Open objExcel, "C:\Users\User\Documents\Fiscal2017.xlsx"

 XL_PrintWorkSheetAs_PDF objExcel, "SalesQ4", "C: \ Users \ User \ Documents \ SalesQ 4"

 XL_CloseInstance objExcel, True

Else

 'code to deal with the failure to create an instance of Excel

End If

This code fragment example creates a new instance of MS Excel, and then opens a workbook named Fiscal2017.xlsx. The newly opened workbook

becomes the active workbook in the Excel instance. The call to XL_PrintWorkSheetAs_PDF saves the specified worksheet ("SalesQ4" in the

example) as a PDF document, using the print margins and page setup currently in effect. Notice that no file extension is included in the name for the output
file.

NOTES:

¶ The sOutName argument (a fully qualified path and file name) should not have any file extension included. Excel's ExportAsFixedFormat

method adds the appropriate file extension. Including a file extension may result in an unusable output file.

¶ If the sOutName argument duplicates an existing file name, the existing file may be over-written without warning.

¶ The PDF file is created with minimum quality for viewing on-screen.

¶ A runtime error will occur if the XLHandle argument does not reference a valid instance of MS Excel.

¶ A runtime error will occur if the path included in the sOutName argument is not valid, or if the file name itself is not valid.

See the code listing for ofcApp_Excel starting on page 52 to see the full source code for XL_PrintWorkSheetAs_PDF.

The next section describes the contents of the ofcApp_Word module.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 23 of 85

ofcApp_Word – The MS Word Library Module
The module named ofcApp_Word contains code for carrying out common tasks when programmatically controlling MS Word with VBA code from another

application.

The ofcApp_Word module contains these procedures/functions:

¶ Word_GetNewInstanceHandle ï creates a new instance of MS Word, returning True or False depending on whether the operation was

successful.

¶ Word_CloseInstanceHandle ï closes a MS Word instance, optionally saving or abandoning changes to any documents open in that

instance.

¶ wdDoc_GetExistingDocHandle ï opens an existing MS Word document from a disk file (same as the Open command in Word).

¶ wdDoc_GetNewDocHandle ï opens a new, empty MS Word document (same as the New command in Word).

¶ wdDoc_CloseDocument ï closes a MS Word document, optionally saving or abandoning any changes to the document.

¶ wdDoc_SaveAs ï performs the equivalent of the Save As command in MS Word, saving a document to a new file name and/or location.

¶ Word_WindowMaximize ï maximizes the Word instance window to full-screen.

¶ Word_WindowMinimize ï minimizes the Word instance window.

¶ wdDoc_SendText 2Document ï inserts large or small blocks of text into an already opened MS Word document.

¶ wdDoc_SendText 2NewDocument ï creates a new MS Word document, and then inserts large or small blocks of text into the document.

¶ wdDoc_SendEnvelope ï creates a new instance of MS Word, and creates an envelope in that instance. Optionally prints the envelope

automatically, or leaves the MS Word instance with the new envelope open.

¶ wdDoc_Insert_ImageFile ï inserts an image file into a document at a location marked with a Word bookmark.

¶ MailMerge_WriteOutputFile_AsText ï creates a text file for use as a source of mail-merge data.

¶ MailMerge_SendMailMerge2Word_FromText ï sets up the conditions to create a mail-merge using a text file as the data source.

¶ MailMerge_Execute_FromText ï performs a mail-merge in MS Word using a previously opened Word mail-merge document, with a data

source from a text file.

¶ MailMerge_WriteOutputFile_AsDB ï creates a MS Access .accdb file for use as a source of mail-merge data.

¶ MailMerge_SendMailMerge2Word_FromDB ï sets up the conditions to create a mail-merge using a MS Access .accdb files as the data

source.

¶ MailMerge_Execute_FromDB ï performs a mail-merge in MS Word using a previously opened Word mail-merge document, with a data

source contained in a MS Access .accdb file.

The next section discusses the public constants declared in ofcApp_Word, followed by sections describing the syntax for using each procedure and

function in the library module.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 24 of 85

Public Constants in OFCAPP_WORD
The functions and procedures used to work with MS Word have many statements that use constant values declared in Word VBA. Because all of the code
in the MS Office Automation library is late-binding and does not use an explicit reference to the Word VBA library, the Word constants are not available.

To make the MS Office Automation library code more readable and easier to maintain, no literal values are used to replace the Word constants. Instead, the

ofcApp_Word module declares several enumerated constants to replicate the constant values declared in the Word object library.

The convention in MS Word is that all Word constants are declared with a prefix of "wd". In the ofcApp_Word module, the constants follow the spirit of

the convention by declaring all of the Word-related constants with a prefix of "vwd" (the v is for "virtual"). The vwd prefix preserves code readability, and ï

in the event that a reference to the Word object library is added to your project ï prevents the Word constants declared in ofcApp_Word from conflicting

with the MS Word VBA library constants.

The public "virtual" Word constants are declared in the ofcApp_Word module as an enumeration named vwdConstants and are:

¶ vwdMergeSubTypeAccess ï specifies a mail-merge sub-type as being MS Access

¶ vwdMergeSubTypeOther ï used when a mail-merge sub-type is a text file.

¶ vwdSendToNewDocument ï specifies that a mail-merge is sent to a new document

¶ vwdDefaultFirstRecord ï use the first record of a mail-merge data source as the first record used in the mail-merge

¶ vwdDefaultLastRecord ï use the last record of a mail-merge data source as the last record used in the mail-merge

¶ vwdSaveChanges ï indicates that changes should be saved when closing a document

¶ vwdDoNotSaveChanges ï indicates that changes should not be saved when closing a document

¶ vwdPromptToSaveChanges ï indicates that user should be prompted whether to save changes when closing a document.

¶ vwdFormatXMLDocument ï specifies MS Word .docx document format for Save As

¶ vwdNewBlankDocument ï specifies a blank document when creating a new document

¶ vwdWindowStateMinimize ï specify a minimized window state

¶ vwdWindowStateMaximize ï specify a maximized window state

¶ vwdOpenFormatAuto ï specifies automatic detection of file format

¶ vwdCharacter ï specifies a unit of characters for navigation commands

¶ vwdWord ï specifies a unit words for navigation commands

¶ vwdSentence ï specifies a unit of sentences for navigation commands

¶ vwdParagraph ï specifies a unit of paragraphs for navigation commands

¶ vwdLine ï specifies a unit of lines for navigation commands

¶ vwdStory ï specifies a unit of story (that is, the header, footer, body of a document) for navigation commands

¶ vwdGoToBookmark ï specifies navigating to a Word bookmark

NOTE: The vwdConstants enumeration contains a few constants not actually used in this library code, but which are often useful.

Refer to the ofcApp_Word module listing on page 57 to see the actual constant declarations. The following sections describe each procedure and

function of the ofcApp_Word module.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 25 of 85

Word_GetNewInstanceHandle
Use the Word_GetNewInstanceHandle function to create a new instance of MS Word, and assign it to an object variable.

Word_GetNewInstanceHandle returns True if the Word instance was successfully created, and False otherwise.

The declaration of Word_GetNewInstanceHandle is:

Public Function Word_GetNewInstanceHandle(ByRef WDHandle As Object, _

 Optional WindowStyle As vwdConstants = vwdWindowStateMinimize) As Boolean

Notice that the WDHandle argument is passed by reference. If the function is successful, WDHandle contains a reference to the new instance of Word

and returns True. If, for some reason, the function is not successful in creating a new instance of Word, WDHandle is set to Nothing, and the function

returns False.

The optional WindowStyle argument is of type vwdConstants, and enables the calling code to specify whether the new Word instance should be

opened with a minimized or maximized window. If omitted, the default is to open the new Word instance in a minimized window.

This code fragment shows an example of Word_GetNewInstanceHandle:

Dim objWord As Object

If Word_GetNewInstanceHandle(obj Word) Then

 'code that does things with the new instance of Word

Else

 'code to deal with the failure to create an instance of Word

End If

In the preceding code fragment, objWord is declared as a generic Object type. If the Word_GetNewInstanceHandle function is successful,

objWord will contain a reference to the newly-created Word instance. The WindowStyle argument was omitted, so the Word instance will open in a

minimized window.

NOTES:

¶ The Word_GetNewInstanceHandle function contains error-handling code that displays an error message in a MsgBox in the case that

creating a new instance of Word fails. This relieves the user-programmer from having to write her own error-handling messages.

¶ The Word_GetNewInstanceHandle function always makes the new instance of Word visible. If any subsequent code that manipulates the

instance fails with a runtime error, or if the user-programmer does not explicitly close the Word instance, application users will be able to see the
instance in the system tray, and close it manually. Otherwise, unclosed instances of Word are invisible, and constitute a major memory leak in the
application.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for Word_GetNewInstanceHandle.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 26 of 85

Word_CloseInstanceHandle
Use the Word_CloseInstanceHandle procedure to close an instance of MS Word (and all open documents in the instance). You specify whether

documents should be closed with or without saving any changes.

The declaration of Word_CloseInstanceHandle is:

Public Sub Word_CloseInstanceHandle(ByRef WDHandle As Object, bSave As Boolean)

Notice that WDHandle is passed by reference (ByRef). When Word_CloseInstanceHandle has finished closing all of the documents in the Word

instance, WDHandle is set to Nothing. The bSave argument specifies whether or not changes to documents open in the Word instance are saved.

This code fragment shows an example of Word_CloseInstanceHandle:

Dim objWord As Object

If Word_GetNewInstanceHandle(objWord) Then

 'code that does things with the new instance of Word

 Word_CloseInstanceHandle obj Word, False

Else

 'code to deal with the failure to create an instance of Word

End If

After whatever tasks using the Word instance referenced by objWord are complete, the Word instance is closed with a call to the

Word_CloseInstanceHandle procedure. In this example, the value of the bSave argument is False, so all documents in the Word instance are

closed without saving any changes. The objWord variable will be set to Nothing.

Usually, you should close any Word instances you create as soon as you are done with them.

NOTE: A runtime error will occur if the WDHandle argument does not contain a valid reference to an instance of MS Word.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for Word_CloseInstanceHandle.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 27 of 85

wdDoc_GetExistingDocHandle
The wdDoc_GetExistingDocHandle function opens an existing Word document file in a previously initialized instance of MS Word, and returns a

value of True or False, depending on whether the operation was successful.

The declaration of wdDoc_GetExistingDocHandle is:

Public Function wdDoc_GetExistingDocHandle(ByRef DocHandle As Object, _

 ByRef WDHandle As Object, _

 ByVal sDocName As String) As Boolean

If opening the document file is successful, the docHandle argument (passed ByRef) will reference the new document object. The WDHandle argument

contains a reference to a previously created MS Word instance. The sDocName argument is a string value containing the name of the file to be opened,

and a fully qualified path.

This code fragment shows an example of wdDoc_GetExistingDocHandle:

Dim objWord As Object

Dim objDoc as Object

Dim strFName As String

If Word_GetNewInstanceHandle(objWord) Then

 strFName = "C:\Users\User\Documents\Sales Q2 2017.docx"

 If wdDoc_GetExistingDocHandle (objDoc, obj Word, strFName) then

 'code to do things with the document object

 End If

 Word_CloseInstanceHandle objWord, True

Else

 'code to deal with the failure to create an instance of Word

End If

In this code fragment example, after creating a new instance of MS Word, a document named Sales Q2 2017.docx is opened using a string variable

(strFName) for the document's file name. Notice that the fully qualified path (C:\Users\User\Documents\) is included with the file name. The

variable objDoc will contain a reference to the newly opened document.

NOTES:

¶ The wdDoc_GetExistingDocHandle function contains error-handling code that displays an error message in a MsgBox in the case that

opening the MS Word document fails. This relieves the user-programmer from having to write her own error-handling messages.

¶ This code will produce a runtime error if the WDHandle argument does not contain a valid reference to an instance of MS Word.

¶ A runtime error will occur if the path or file do not exist or are invalid.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for wdDoc_GetExistingDocHandle.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 28 of 85

wdDoc_GetNewDocHandle
The wdDoc_GetNewDocHandle function creates a new document in a previously initialized instance of MS Word, and returns a value of True or

False, depending on whether the operation was successful.

The declaration of wdDoc_GetNewDocHandle is:

Public Function wdDoc_GetNewDocHandle(ByRef DocHandle As Object, ByRef WDHandle As Object) As Boolean

If the function is successful, the docHandle argument holds a reference to the newly created document. The WDHandle argument is a previously created

instance of MS Word.

This code fragment shows an example of wdDoc_GetNewDocHandle:

Dim objWord As Object

Dim objDoc as Object

If Word_GetNewInstanceHandle(objWord) Then

 If wdDoc_GetNewDocHandle(objDoc, obj Word) then

 'code to do things with the document object

 End If

 Word_CloseInstanceHandle objWord, True

Else

 'code to deal with the failure to create an instance of Word

End If

In this code fragment example, after creating a new instance of MS Word, the call to wdDoc_GetNewDocHandle creates a new, blank document in the

instance of MS Word referenced by objWord. The variable objDoc will contain a reference to the newly opened document.

NOTES:

¶ The wdDoc_GetNewDocHandle function contains error-handling code that displays an error message in a MsgBox in the case that creating the

MS Word document fails. This relieves the user-programmer from having to write her own error-handling messages.

¶ This code will produce a runtime error if the WDHandle argument does not contain a valid reference to an instance of MS Word.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for wdDoc_GetNewDocHandle.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 29 of 85

wdDoc_CloseDocument
The wdDoc_CloseDocument procedure closes a previously initialized reference to a MS Word document. Use wdDoc_CloseDocument to close a

single document in an instance of MS Word, and to specify whether or not changes to the document are saved.

The declaration of wdDoc_CloseDocument is:

Public Sub wdDoc_CloseDocument(ByRef DocHandle As Object, bSave As Boolean)

The docHandle argument holds a reference to the document to be closed. The bSave argument controls whether or not changes to the document are

saved. If bSave is True, changes are saved, otherwise changes are not saved.

This code fragment shows an example of wdDoc_CloseDocument:

Dim objWord As Object

Dim objDoc as Object

If Word_GetNewInstanceHandle(objWord) Then

 If wdDoc_GetNewDocHandle(objDoc, objWord) then

 'code to do things with the document object

 wdDoc_CloseDocument objDoc, True

 End If

 ofcApp_Word.CloseInstanceHandle objWord, True

Else

 'code to deal with the failure to create an instance of Word

End If

In this code fragment example, after creating a new instance of MS Word, and creating a new Word document, the call to wdDoc_CloseDocument

closes the document object. The bSave argument is a literal True value, causing any changes in the document to be saved on closing.

NOTES:

¶ A runtime error will occur if the docHandle argument does not contain a valid reference to a MS Word document.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for wdDoc_CloseDocument.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 30 of 85

wdDoc_SaveAs
The wdDoc_SaveAs procedure saves a previously initialized reference to a MS Word document under another name and/or to a different location.

The declaration of wdDoc_SaveAs is:

Public Sub wdDoc_SaveAs(ByRef DocHandle As Object, sDocName As String)

The docHandle argument holds a reference to the document to be saved. The sDocName argument contains a file name and a fully qualified path.

This code fragment shows an example of wdDoc_SaveAs:

Dim objWord As Object

Dim objDoc as Object

If Word_GetNewInstanceHandle(objWord) Then

 If wdDoc_GetNewDocHandle(objDoc, objWord) then

 'code to do things with the document object

 wdDoc_SaveAs objDoc, "C: \ Users \ User \ Documents \ Testing.docx"

 wdDoc_CloseDocument objDoc, True

 End If

 Word_CloseInstanceHandle objWord, True

Else

 'code to deal with the failure to create an instance of Word

End If

In this code fragment example, after creating a new instance of MS Word and creating a new Word document, the call to wdDoc_SaveAs saves the

document referenced by objDoc to a file named Testing.docx. Notice that a full path (C:\Users\User\Documents\) is included with the file

name.

NOTES:

¶ This procedure may over-write existing files of the same name without warning.

¶ If you omit the file extension (.docx), it is automatically appended to the file name.

¶ A runtime error will occur if the docHandle argument does not contain a valid reference to a MS Word document.

¶ A runtime error will occur if the path does not exist or is invalid.

¶ A runtime error will occur if the file name is invalid.

¶ In more recent versions of MS Word, the SaveAs2 method has replaced the SaveAs method from older versions (such as MS Access 2007). The

wdDoc_SaveAs procedure uses conditional compilation to invoke the most current method for your version of Access.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for wdDoc_SaveAs.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 31 of 85

Word_WindowMaximize
The Word_WindowMaximize procedure maximizes the MS Word window. This procedure is useful if you intend to leave Word open for your

application's user to interact with.

The declaration of Word_WindowMaximize is:

Public Sub Word_WindowMaximize(ByRef WDHandle As Object)

The WDHandle argument is a reference to an existing MS Word instance.

This code fragment shows an example of Word_WindowMaximize:

Dim objWord As Object

If Word_GetNewInstanceHandle(objWord) Then

 'code that does things with the new instance of Word

 Word_WindowMaximize obj Word

Else

 'code to deal with the failure to create an instance of Word

End If

In this code fragment example, the programmer wants to leave Word open for a user to interact with, after having performed some tasks with the Word

instance. Word_WindowMaximize is used to make the Word window the size of the full screen and, in this case, the instance is not closed.

NOTE: A runtime error will occur if the WDHandle argument does not contain a valid reference to an instance of MS Word.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for Word_WindowMaximize.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 32 of 85

Word_WindowMinimize
The Word_WindowMinimize procedure minimizes the MS Word window. This procedure is useful to make your Word instance as unobtrusive as

possible.

The declaration of Word_WindowMinimize is:

Public Sub Word_WindowMinimize(ByRef WDHandle As Object)

The WDHandle argument is a reference to an existing MS Word instance.

This code fragment shows an example of Word_WindowMinimize:

Dim objWord As Object

If Word_GetNewInstanceHandle(objWord) Then

 Word_WindowMinimize objWord

 'code that does things with the new instance of Word

 Word_CloseInstanceHandle objWord, True

Else

 'code to deal with the failure to create an instance of Word

End If

In this code fragment example, the programmer wants Word to be unobtrusive while her application is working with the Word instance. The Word instance is
minimized while it is in use, and then eventually closed.

NOTE: A runtime error will occur if the WDHandle argument does not contain a valid reference to an instance of MS Word.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for Word_WindowMinimize.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 33 of 85

wdDoc_SendText2Document
The SendText_to_Document procedure is intended to insert large blocks of text (for example, several paragraphs at a time) at the current insertion

point of a document.

The declaration of wdDoc_SendText2Document is:

Public Sub wdDoc_SendText2Document(ByRef DocHandle As Object, ByRef WDHandle As Object, _

 ParamArray xfrText() As Variant)

The docHandle argument is a reference to an existing Word document. The WDHandle argument is a reference to an existing MS Word instance. The

xfrText argument is a ParamArray of strings. You may pass as many strings as you wish in the xfrText argument.

This code fragment shows an example of wdDoc_SendText2Document:

Dim objWord As Object

Dim objDoc As Object

If Word_GetNewInstanceHandle(objWord) Then

 'code that does things with the new instance of Word

 If wdDoc_GetNewDocHandle(objDoc) then

 wdDoc_SendText 2Document objDoc, objWord, "Now is the time", "for all good men", "and so on"

 End If

Else

 'code to deal with the failure to create an instance of Word

End If

In this code fragment example, a new instance of MS Word is created, and then a new document is created within that instance. The

wdDoc_SendText2Document procedure inserts each string (in this example, all literal values) into the document referenced by objDoc. Each string in

the ParamArray argument is inserted as a separate paragraph. The results of this call to wdDoc_SendText2Document look like this:

Now is the time

for all good men

and so on

NOTES:

¶ The document referenced by the docHandle argument becomes the active document in the MS Word instance.

¶ Each string argument in the xfrText argument is inserted into the document with a paragraph mark at the end.

¶ A string that is part of the xfrText argument may be any length up to the maximum string length, and may contain tab and new-line characters.

¶ A runtime error will occur if the WDHandle argument does not contain a valid reference to an instance of MS Word.

¶ A runtime error will occur if the docHandle argument does not contain a valid reference to a document.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for wdDoc_SendText2Document.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 34 of 85

wdDoc_SendText2NewDocument
The wdDoc_SendText2NewDocument function is intended to insert large blocks of text (for example, several paragraphs at a time) into a completely

new document. Use this function as a short-hand to create an instance of MS Word and a new document simultaneously ï

wdDoc_SendText2NewDocument returns references to an initialized instance of MS Word and the new document in its arguments. You will typically

use this function to create a new document, insert several paragraphs, and then leave the document open in MS Word for your application's user to interact
with.

The declaration of wdDoc_SendText2NewDocument is:

Public Function wdDoc_SendText2NewDocument(ByRef DocHandle As Object, _

 ByRef WDHandle As Object, _

 ParamArray xfrText() As Variant) As Boolean

docHandle and WDHandle are uninitialized object variables ï wdDoc_SendText2NewDocument sets these ByRef arguments to reference the

new word document and new MS Word instance that it creates.

The xfrText argument is a ParamArray of strings. You may pass as many strings as you wish in the xfrText argument.

wdDoc_SendText2NewDocument returns True if it successfully created or obtained an instance of MS Word, and also successfully created a new

document, False otherwise.

This code fragment shows an example of wdDoc_SendText2NewDocument:

 Dim objWord As Object

 Dim objDoc As Object

 If wdDoc_SendText 2NewDocument(objDoc, objWord, _

 "Now is the time", "for all good men", "and so on") Then

 Debug.Print "Created new document successfully"

 Else

 Debug.Print "New document creation failed."

 End If

In this code fragment example, the wdDoc_SendText2NewDocument function creates a new instance of MS Word, creates a new document in that

instance, and then inserts each string (in this example, all literal values) into the document.

If the call to wdDoc_SendText2NewDocument is successful, objDoc contains a reference to the newly created document, and objWord contains a

reference to the newly created instance of MS Word, and the function result is True.

Each string argument is inserted as a separate paragraph. The results of this call to wdDoc_SendText2NewDocument look like this:

Now is the time

for all good men

and so on

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 35 of 85

NOTES:

¶ This function creates a new instance of MS Word; the WDHandle argument is initialized to point to the new Word instance. Any existing reference

in WDHandle will be lost.

¶ The docHandle argument is initialized to point to the new document object; any existing reference in docHandle will be lost.

¶ This function contains error-handling code that uses MsgBox to display an error message in the event that it is unable to create an instance of MS

Word and/or create a new document.

¶ Each string argument in the xfrText argument is inserted into the document with a paragraph mark at the end.

¶ A string that is part of the xfrText argument may be any length up to the maximum string length, and may contain tab and new-line characters.

¶ When this function has completed execution, it gives the instance of MS Word the focus, with the new document as the active document.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for wdDoc_SendText2NewDocument.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 36 of 85

wdDoc_SendEnvelope
The wdDoc_SendEnvelope procedure creates a new envelope document in MS Word, and optionally sends it automatically to the default printer or

leaves it open in MS Word for your application's user to interact with.

The declaration of wdDoc_SendEnvelope is:

Public Sub wdDoc_SendEnvelope(strTo As String, strReturn As String, bAutoPrint As Boolean)

The strTo argument is a string containing the recipient's address. The strReturn argument is a string containing the return address of the envelope.

The bAutoPrint argument determines whether the envelope is immediately printed (True) or left open in MS Word (False).

This code fragment shows an example of wdDoc_SendEnvelope:

Dim strFrom As String

Dim strAddress As String

strFrom = "Capt. James Kirk" & vbNewLine & "123 Enterprise Way" & vbNewLine & "Titan Base FE 12345"

strAddress = "Lt. Uhuru" & vbNewLine & "345 Federation Ave." & vbNewLine & "San Francisco CA 54321"

wdDoc_SendEnvelope strAddress, strFrom, False

In this code fragment example, string variables (strFrom and strAddress) are initialized with a return address and a destination address.

wdDoc_SendEnvelope is called, passing the string variables as the arguments for strTo and strReturn. A literal value of False is passed as the

bAutoPrint argument, indicating that the envelope should be left open in MS Word.

NOTES:

¶ As shown in the example, strings for the strTo and strReturn arguments may (and should) contain new line characters (vbNewLine) to

format the addresses.

¶ If the bAutoPrint argument is True, then this procedure immediately sends the envelope to the default printer, and then closes the envelope

document without saving any changes. If bAutoPrint is False, the new envelope is left open in MS Word, and Word is given the focus when

this procedure finishes executing.

¶ This procedure attempts to use an existing instance of MS Word in which to create the new envelope. If there is no instance of MS Word already
open, then this procedure creates a new instance of MS Word.

¶ This procedure contains error-handling code that uses MsgBox to display an error message in the event that it is unable to obtain an existing

instance of MS Word or create a new one.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for wdDoc_SendEnvelope.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 37 of 85

wdDoc_Insert_ImageFile
The wdDoc_Insert_ImageFile procedure inserts any of the image types that MS Word supports into a document at a location determined by a Word

bookmark. Use this procedure if you want to automate inserting the same image into multiple documents, or insert images into pre-determined locations in a
single document.

The declaration of wdDoc_Insert_ImageFile is:

Sub wdDoc_Insert_ImageFile(WDHandle As Object, DocHandle As Object, _

 sBookMarkName As String, sFileName As String)

The WDHandle argument is a reference to a previously created instance of Word, and docHandle is a reference to a previously opened Word document.

sBookMarkName is a string containing the name of a Word bookmark that already exists in the document. sFileName is a string containing the name of

an image file to insert, including a fully-qualified path.

This code fragment shows an example of wdDoc_Insert_ImageFile:

 Dim objWord As Object 'instance of MS Word

 Dim objDoc As Object 'Word document

 If Not Word_GetNewInstanceHandle(objWord) Then Exit Sub

 If Not wdDoc_GetExistingDocHandle(objDoc, objWord, _

 CurrentProject.Path & "\Test Document.docx") Then Exit Sub

 wdDoc_Insert_ImageFile objWord, objDoc, "CompanyLogo1", CurrentProject.Path & "\logo1.jpg"

See the code listing for ofcApp_Word starting on page 57 to see the full source code for wdDoc_Insert_ImageFile.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 38 of 85

MailMerge_WriteOutputFile_AsText
The MailMerge_WriteOutputFile_AsText function creates a comma-delimited text file containing mail merge data from any source within your

application. The output text file contains a row that defines column headings; each column is separated by a comma, and text data is enclosed in quotation

marks. MailMerge_WriteOutputFile_AsText works flexibly ï it writes as many columns are there are fields in the record source; each column has

the same name as the field from which it comes.

The declaration of MailMerge_WriteOutputFile_AsText is:

Public Function MailMerge_WriteOutputFile_AsText(sFileName As String, _

 sRecSource As String) As Boolean

The sFileName argument is a string containing the file name to which the output is written, along with a fully-qualified path. sRecSource is a string

containing the record source for the output. sRecSource may be a table name, query name, or an SQL statement. The function returns True if the file-

writing process was successful, False otherwise.

The procedure below shows an example of MailMerge_WriteOutputFile_AsText:

Sub test_MailMerge_WriteOutputFile_AsText()

 Dim sFName As String

 Dim sRecSource As String

 sRecSource = "tbl_MailMergeSource"

 sFName = "C:\Users\User\Documents\test\MailMergeOutput.txt"

 If ofcApp_Word.MailMerge_WriteOutputFile_AsText(sFName, sRecSource) Then

 MsgBox "Output file created successfully."

 Else

 MsgBox "Output file creation failed."

 End If

End Sub

In this example, a string variable (sRecSource) contains the name of a table in the current database (tbl_MailMergeSource) that holds data

suitable for a mail-merge. The string variable sFName contains the file name of the output text file, and a fully qualified path. This call to

MailMerge_WriteOutputFile_AsText writes a file named MailMergeOutput.txt in the specified folder. The data in the file is formatted so

that each data item is separated by a comma (,) and text values are enclosed in quotation marks (").

The sRecSource argument may be any string value that can be used to open a recordset:

¶ a table name

¶ a query name

¶ an SQL statement

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 39 of 85

For example, the following SQL string could be used for the record source argument of MailMerge_WriteOutputFile_AsText to select only

records whose Country field value begins with the letter "U":

 sRecSource = "SELECT tbl_MailMergeSource.* " & _

 "FROM tbl_MailMergeSource " & _

 "WHERE (tbl_MailMergeSource.Country Like ""U*"");"

By using queries or directly passing an SQL statement, you can control the number of columns in the output text file, as well as selecting what records will
appear in the output text file.

NOTES:

¶ The output filename always has the .txt extension. If the extension is not already part of the file name, it is added to the file name.

¶ The output file will contain as many columns as there are fields in the record source; column headings are the field names.

¶ Use a query or SQL statement as the sRecSource argument to:

o select records to be included in the output

o control what columns from the record source will appear in the output text file

o control the order of records in the output text file (such as ordered by country, postal code, and similar.

¶ If an error occurs while writing the output file, MailMerge_WriteOutputFile_AsText displays an error message using MsgBox.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for MailMerge_WriteOutputFile_AsText.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 40 of 85

MailMerge_SendMailMerge2Word_FromText
The MailMerge_SendMailMerge2Word_FromText procedure carries out the task of opening a MS Word mail-merge document and supplying it

with a specified text data input file. The MS Word mail-merge document is left open for review by the user.

The declaration of MailMerge_SendMailMerge2Word_FromText is:

Public Sub MailMerge_SendMailMerge2Word_FromText(sMergeFile As String, sMergeDoc As String)

sMergeFile is the name of the mail-merge data file (presumed to be a comma-delimited text file). sMergeFile must contain the data file name and a

fully qualified path. The data file must be a text file that meets the requirements for MS Word mail-merge input files, and must contain columns that match
the mail-merge fields in the MS Word document.

sMergeDoc is the name of the MS Word document in which the mail-merge will occur. sMergeDoc must contain the document file name and a fully

qualified path.

The following procedure shows an example of MailMerge_SendMailMerge2Word_FromText:

Sub test_MailMerge_SendMailMerge2Word_FromText()

 Dim sDocName As String

 Dim sDBName As String

 sDBName = "C:\Users\User\Documents\test\MailMergeOutput.txt"

 sDocName = "C:\Usets\User\Documents\test\Mail Merge Sample.docx"

 ofcApp_Word.MailMerge_SendMailMerge2Word_FromText sDBName, sDocName

End Sub

In this example, the string variable sDBName contains the file name and full path to the text file containing the mail-merge data. The string variable

sDocName contains the file name and full path of the MS Word mail-merge document.

MailMerge_SendMailMerge2Word_FromText creates a new instance of MS Word, opens the mail-merge document, and then calls

MailMerge_Execute_FromText to perform the mail-merge in MS Word. When MailMerge_SendMailMerge2Word_FromText is done, the

mail-merge document is closed, and the new mail-merge is left open in MS Word for review.

NOTES:

¶ If MailMerge_SendMailMerge2Word_FromText is unable to open the MS Word mail-merge document, it displays an error message using

MsgBox.

¶ The mail-merge document and the mail-merge data text file are expected to match each other ï that is, the mail-merge document is expected to
have mail-merge fields that correspond to the columns in the input text file.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for MailMerge_SendMailMerge2Word_FromText.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 41 of 85

MailMerge_Execute_FromText
The MailMerge_Execute_FromText procedure executes the actual mail-merge task in MS Word by opening the data source, and initiating the mail-

merge. The completed mail-merge is left open in MS Word for review/printing by the user.

The declaration of MailMerge_Execute_FromText is:

Public Sub MailMerge_Execute_FromText(ByRef wrdDoc As Object, sData As String)

wrdDoc is a reference to a previously opened/initialized MS Word document object. sData is a fully qualified path name pointing to the mail-merge data

source.

No example is shown, because MailMerge_Execute_FromText is intended to be called from within

MailMerge_SendMailMerge2Word_FromText, which sets up the conditions needed for MailMerge_Execute_FromText ï an open instance

of MS Word, and an open mail-merge document.

If you prefer to create your own code to set up the conditions for a mail-merge, it is possible to call MailMerge_Execute_FromText directly.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for MailMerge_Execute_FromText.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 42 of 85

MailMerge_WriteOutputFile_AsDB
The MailMerge_WriteOutputFile_AsDB function creates a MS Access .accdb database file containing mail merge data from any source within

your application. The output .accdb file contains a single table, containing fields that match whatever fields are in the specified data source.

MailMerge_WriteOutputFile_AsDB works flexibly ï it copies the field names and data types from the record source, however many and whatever

type, into the output table of the .accdb file it creates.

The declaration of MailMerge_WriteOutputFile_AsDB is:

Public Function MailMerge_WriteOutputFile_AsDB(sFileName As String, _

 sRecSource As String, _

 sTableName As String) As Boolean

The sFileName argument is a string containing the file name to which the output is written, along with a fully-qualified path. sRecSource is a string

containing the record source for the output. sRecSource may be a table name, query name, or an SQL statement. sTableName is a string containing

the name of the output table in the .accdb file that MailMerge_WriteOutputFile_AsDB creates. The function returns True if the file-writing

process was successful, False otherwise.

The procedure below shows an example of MailMerge_WriteOutputFile_AsDB:

Sub test_MailMerge_WriteOutputFile_AsDB()

 Dim sFName As String

 Dim sRecSource As String

 sRecSource = "tbl_MailMergeSource"

 sFName = "C:\Users\User\Documents\test\MailMergeOutput.accdb"

 If ofcApp_Word.MailMerge_WriteOutputFile_AsDB(sFName, sRecSource, "tbl_MailMerge") Then

 MsgBox "MAIL MERGE DB OK"

 Else

 MsgBox "MAIL MERGE DB FAILED"

 End If

End Sub

In this example, a string variable (sRecSource) contains the name of a table in the current database (tbl_MailMergeSource) that holds data

suitable for a mail-merge. The string variable sFName contains the file name of the output .accdb file, and a fully qualified path. The sTableName

argument is supplied with a string literal, "tbl_MailMerge".

This call to MailMerge_WriteOutputFile_AsDB writes a file named MailMergeOutput.accdb in the specified folder. The resulting .accdb

file contains only one table (tbl_MailMerge) that contains the mail-merge data.

The sRecSource argument may be any string value that can be used to open a recordset:

¶ a table name

¶ a query name

¶ an SQL statement

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 43 of 85

For example, the following SQL string could be used for the record source argument of MailMerge_WriteOutputFile_AsDB to select only records

whose Country field value begins with the letter "U":

 sRecSource = "SELECT tbl_MailMergeSource.* " & _

 "FROM tbl_MailMergeSource " & _

 "WHERE (tbl_MailMergeSource.Country Like ""U*"");"

By using queries or directly passing an SQL string, you can control the number of columns in the output table, as well as selecting what records will appear
in the output table, and in what order they appear (by country, postal code, and so on).

NOTES:

¶ The output database filename always has the .accdb extension. If the extension is not already part of the file name, it is added to the file name.

¶ The output table will contain as many fields as there are fields in the record source.

¶ Use a query or SQL statement as the sRecSource argument to select records to be included in the output, and to control what fields from the

record source will appear in the output table.

¶ If an error occurs while creating the new .accdb file and adding the output table, MailMerge_WriteOutputFile_AsDB displays an error

message with MsgBox.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for MailMerge_WriteOutputFile_AsDB.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 44 of 85

MailMerge_SendMailMerge2Word_FromDB
The MailMerge_SendMailMerge2Word_FromDB procedure carries out the task of opening a MS Word mail-merge document and supplying it with a

specified MS Access .accdb data input file. The MS Word mail-merge is left open for review by the user.

The declaration of MailMerge_SendMailMerge2Word_FromDB is:

Public Sub MailMerge_SendMailMerge2Word_FromDB(sMergeFile As String, _

 sMergeDoc As String, _

 sTableName As String)

sMergeFile is the name of the mail-merge data file (presumed to be an MS Access .accdb file). sMergeFile must contain the database file name

and a fully qualified path. The database file must contain fields that match the mail-merge fields in the MS Word document.

sMergeDoc is the name of the MS Word document in which the mail-merge will occur. sMergeDoc must contain the document file name and a fully

qualified path.

sTableName is the name of the table in the database which will provide the mail-merge data.

The following procedure shows an example of MailMerge_SendMailMerge2Word_FromDB:

Sub test_MailMerge_SendMailMerge2Word_FromDB()

 Dim sDocName As String

 Dim sDBName As String

 sDBName = "C:\Users\User\Documents\test\MailMergeOutput.accdb"

 sDocName = "C:\Users\User\Documents\test\Mail Merge Sample.docx"

 ofcApp_Word.MailMerge_SendMailMerge2Word_FromDB sDBName, sDocName, "tbl_MailMerge"

End Sub

In this example, the string variable sDBName contains the file name and full path to the .accdb file containing the mail-merge data. The string variable

sDocName contains the file name and full path of the MS Word mail-merge document, and a string literal is used to specify the name of the table from

which mail-merge data is obtained.

MailMerge_SendMailMerge2Word_FromDB creates a new instance of MS Word, opens the mail-merge document, and then calls

MailMerge_Execute_FromDB to perform the mail-merge in MS Word. When MailMerge_SendMailMerge2Word_FromDB is done, the mail-

merge document is closed, and the new mail-merge is left open in MS Word for review.

NOTES:

¶ If MailMerge_SendMailMerge2Word_FromDB is unable to open the MS Word mail-merge document, it displays an error message using

MsgBox.

¶ The mail-merge document and the mail-merge data in the source table are expected to match each other ï that is, the mail-merge document is
expected to have mail-merge fields that correspond to the fields in the input table.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for MailMerge_SendMailMerge2Word_FromDB.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 45 of 85

MailMerge_Execute_FromDB
The MailMerge_Execute_FromDB procedure executes the actual mail-merge task in MS Word by opening the data source, and initiating the mail-

merge. The completed mail-merge is left open in MS Word for review/printing by the user.

The declaration of MailMerge_Execute_FromDB is:

Public Sub MailMerge_Execute_FromDB(ByRef wrdDoc As Object, sData As String, sTableName As String)

wrdDoc is a reference to a previously opened/initialized MS Word document object. sData is a fully qualified path name pointing to the mail-merge data

source. sTableName is a string containing the name of the table in the database named by sData from which mail-merge data will be obtained.

No example is shown, because MailMerge_Execute_FromDB is intended to be called from within

MailMerge_SendMailMerge2Word_FromDB, which sets up the conditions needed for MailMerge_Execute_FromDB ï an open instance of MS

Word, and an open mail-merge document.

If you prefer to create your own code to set up the conditions for a mail-merge, it is possible to call MailMerge_Execute_FromDB directly.

See the code listing for ofcApp_Word starting on page 57 to see the full source code for MailMerge_Execute_FromDB.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 46 of 85

ofcApp_Outlook – The MS Outlook Library Module
The module named ofcApp_Outlook contains code for carrying out common tasks when programmatically controlling MS Outlook with VBA code in

another application.

The ofcApp_Outlook module contains these procedures/functions:

¶ Outlook_ GetNewInstanceHandle ï creates a new instance of MS Outlook, optionally making the instance visible. Returns True or False

depending on the success of the operation.

¶ Outlook_ CloseInstanceHandle ï closes an instance of MS Outlook.

¶ Outlook_CreateEMail ï creates an email and, depending on arguments you supply, sends, saves, or displays the newly created email.

The following sections describe the syntax for using each procedure and function in the library module.

Public Constants in OFCAPP_OUTLOOK
The ofcApp_Outlook module contains two Enum declarations ï vOutlookConstants and MyMailAction.

The vOutlookConstants enumeration declares several constants used in the code in the module. The enumeration partially replicates the intrinsic

constants declared in MS Outlook, and is created to give the code better readability, but not require a reference to MS Outlook. In Outlook VBA, the

constants are all prefaced with "ol" to distinguish them as belonging to MS Outlook VBA. In the vOutlookConstants enumeration, they are prefaced

with "vol" to mark them as "virtual" Outlook constants. This prevents their names from conflicting with the actual Outlook constant names in the event that

a reference to MS Outlook is added to the project at some point in the future.

The vOutlookConstants enumeration is:

Enum vOutLookConstants

 volFolderSentMail = 5 'olFolderSentMail

 volFolderDisplayNormal = 0 'olFolderDisplayNormal

 volMailItem = 0 'olMailItem

 volWindowStateNormal = 2 'olNormalWindow

 volWindowStateMinimized = 1 'olMinimized

 volWindowStateMaximized = 0 'olMaximized

End Enum

The MyMailAction enumeration is not part of Outlook, and was created for the purpose of providing readable constants to specify actions to perform

with emails ï whether to save, send, or display an email.

The MyMailAction enumeration is:

Enum MyMailAction

 myMailActionSave = 0 'save email

 myMailActionSend = 1 'send email

 myMailActionDisplay = 2 'display email

End Enum

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 47 of 85

Outlook_GetNewInstanceHandle
Use the Outlook_GetNewInstanceHandle function to create a new instance of MS Outlook, and assign it to an object variable.

Outlook_GetNewInstanceHandle returns True if the Outlook instance was successfully created, and False otherwise.

The declaration of Outlook_GetNewInstanceHandle is:

Public Function Outlook_GetNewInstanceHandle(ByRef OLHandle As Object, _

 Optional bDisplay As Boolean = False) As Boolean

Notice that the OLHandle argument is passed by reference. If the function is successful, OLHandle will contain a reference to the new instance of

Outlook and return True. If, for some reason, the function is not successful in creating a new instance of Outlook, OLHandle will be Nothing, and the

function will return False. The bDisplay argument is optional, and defaults to False. If the bDisplay argument is True, the instance of MS Outlook

displays in a normal window, otherwise its window is minimized.

This code fragment shows an example of Outlook_GetNewInstanceHandle:

Dim objOutlook As Object

If Outlook _GetNewInstanceHandle(obj Outlook, True) Then

 'code that does things with the new instance of Outlook

Else

 'code to deal with the failure to create an instance of Outlook

End If

In the preceding code fragment, objOutlook is declared as a generic Object type. If the Outlook_GetNewInstanceHandle function is

successful, objOutlook will contain a reference to the newly-created MS Outlook instance. A literal value of True is passed as the optional bDisplay

argument, causing the newly created instance of Outlook to be shown in a normal window.

NOTES:

¶ The Outlook_GetNewInstanceHandle function contains error-handling code that displays an error message in a MsgBox in the case that

creating a new instance of Outlook fails. This relieves the user-programmer from having to write her own error-handling messages.

¶ By default, the Outlook_GetNewInstanceHandle function displays the new instance of Outlook in a minimized window. Use the bDisplay

optional argument to display the Outlook instance in a normal window.

See the code listing for ofcApp_Outlook starting on page 67 to see the full source code for Outlook_GetNewInstanceHandle.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 48 of 85

Outlook_CloseInstanceHandle
Use the Outlook_CloseInstanceHandle procedure to close an instance of MS Outlook.

The declaration of Outlook_CloseInstanceHandle is:

Public Sub Outlook_CloseInstanceHandle(ByRef OLHandle As Object)

Notice that OLHandle is passed by reference (ByRef). When Outlook_CloseInstanceHandle has

finished executing, OLHandle will be Nothing.

This code fragment shows an example of Outlook_CloseInstanceHandle:

Dim objOutlook As Object

If Outlook_GetNewInstanceHandle(objOutlook) Then

 'code that does things with the new instance of Outlook

 Outlook _CloseInstanceHandle obj Outlook

Else

 'code to deal with the failure to create an instance of Outlook

End If

After whatever tasks using the Outlook instance referenced by objOutlook are complete, the Outlook instance is closed with a call to the

Outlook_CloseInstanceHandle procedure. The objOutlook variable will be Nothing.

NOTE: A runtime error will occur if the OLHandle argument does not contain a valid reference to an instance of MS Outlook.

See the code listing for ofcApp_Outlook starting on page 67 to see the full source code for Outlook_CloseInstanceHandle.

NOTE
Depending on the specific actions you
perform, it is often best to not close the
MS Outlook instance.

In particular, immediate sending of e-
mails is hampered by closing the Outlook
instance without allowing enough time
for Outlook to actually send the e-mail.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 49 of 85

Outlook_CreateEMail
Use the Outlook_CreateEMail procedure to create a new email and, depending on the arguments you pass, to save, send, or display the email.

The declaration of Outlook_CreateEMail is:

Sub Outlook_CreateEMail(ByRef OLHandle As Object, _

 MailAction As MyMailAction, _

 sTo As String, _

 sSubject As String, _

 sBody As String, _

 Optional bIsHTML As Boolean = False, _

 Optional sCC As String = "", _

 Optional sBCC As String = "", _

 Optional sAttachments As Variant)

Outlook_CreateEMail has a fairly long argument list, with several optional arguments:

¶ OLHandle ï an initialized reference to an instance of MS Outlook; required.

¶ MailAction ï one of the MyMailAction enumerated constants; required.

¶ sTo ï a string containing the recipient(s) email address(es); required.

¶ sSubject ï a string containing the subject of the email; required.

¶ sBody ï a string containing the body of the email; required. The sBody argument string may contain either plain text, or text with HTML markup in

it. If you want the HTML to be rendered correctly in the email, you must pass True in the bIsHTML argument.

¶ bIsHTML ï a Boolean value indicating whether the message body contains HTML formatting. This argument is optional, if omitted it defaults to

False.

¶ sCC ï a string containing recipient email address(es) for the CC field of the email; optional.

¶ sBCC ï a string containing recipient email address(es) for the BCC field of the email; optional.

¶ sAttachments ï an array of strings containing the name and fully-qualified path of any files you want to attach to the email; optional.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 50 of 85

The following procedure shows an example of Outlook_CreateEMail:

Sub Test_Outlook_CreateEMail()

 Dim objOutlook As Object 'Outlook instance

 Dim s As String 'temp string

 If Not Outlook_GetNewInstanceHandle(objOutlook) Then Exit Sub

 'create test e-mail for Display - has attachments

 s = CurrentProject.Path & "\"

 Outlook_CreateEMail OLHandle:=objOutlook, _

 MailAction:=myMailActionDisplay, _

 sTo:="somebody@somewhere.com", _

 sSubject:="Test Message Display with attachments", _

 sBody:="Test Display; <i>has attachments.</i> " & Now, _

 bIsHTML:=True, _

 sAttachments:=Array(s & "TestAttach1.txt", _

 s & "TestAttach2.txt", _

 s & "TestAttach3.txt")

End Sub

The procedure above first creates a new instance of Outlook, putting a reference to the new Outlook instance into the OLHandle variable. A string

containing the path to the location of some files to be attached is set up. Next the call to Outlook_CreateEMail is made, using almost all of the

arguments of the procedure. The MailAction argument is passed the value myMailActionDisplay so that the newly created email will be

displayed.

Notice that the sBody argument is passed a string with some HTML tags in it, and that the bIsHTML argument is set to True.

Notice also the use of the Array function in the sAttachments argument to create an array of strings specifying three files to attach to the email.

NOTES:

¶ A runtime error will occur if the OLHandle argument does not contain a valid reference to an instance of MS Outlook.

¶ Saved e-mails are saved in the Outlook Drafts folder.

¶ If you are creating only one or two e-mails, using myMailActionDisplay is the least problematic technique for generating e-mail.

See the code listing for ofcApp_Outlook starting on page 67 to see the full source code for Outlook_CreateEMail.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 51 of 85

Special Considerations When Sending E-Mails Immediately

Using the Send method of the MS Outlook MailItem object presents some challenges. (That is, using the myMailActionSend value as the

value of the MailAction argument of Outlook_CreateEMail.)

First, if you close the Outlook instance, e-mails remain in the send queue until Outlook is again opened. If you want to send e-mails immediately, this
is generally not desirable. For this reason it is best to not explicitly close the MS Outlook instance.

Second, testing reveals that, for older versions of MS Office, there are circumstances where, for reasons unknown, the Send method will fail with a

runtime error. The Send method of the MailItem object is successful when the MS Outlook instance is visible (minimized, normal, or maximized

window). This is why the Outlook_GetNewInstanceHandle function always creates a visible instance of Outlook. If the Outlook instance is

visible (even if minimized), the Send method succeeds; there is the further advantage that users can see that all e-mails have been sent before
manually closing Outlook.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 52 of 85

Code Listings

This section contains the complete module code listing for each of the three modules in the MS Office Automation library.

The complete source code for MSH Library ï MS Office Automation is distributed in an MS Access file named MSH Library ï MS Office

Automation v2017-05.accdb., which may be downloaded from http://www.didjiman.com/business/cv-swareVBA.htm.

MS Excel: ofcApp_Excel

This section contains the entirety of the ofcApp_Excel module. If you use this code in your own applications, you must keep the copyright and license

notices intact, per the GNU Lesser General Public License (pg. 75) and the GNU General Public License (pg. 78). This is not public domain software; it is
licensed to you at no cost.

'COPYRIGHT NOTICE

'THIS VBA MODULE IS COPYRIGHT 2003-2017 BY MATTHEW S. HARRIS. All Rights Reserved.

'You can contact Matthew S. Harris at matthew@didjiman.com

'Code Version: v2017-05

'COPYING PERMISSIONS

'The MS Office Automation Code Library is free software: you can redistribute it and/or modify

'it under the terms of the GNU Lesser General Public License as published by

'the Free Software Foundation, either version 3 of the License, or any later version.

'This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

'without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

'See the GNU Lesser General Public License for more details.

'You should have received a copy of the GNU General Public License

'along with this module. If not, see <http://www.gnu.org/licenses/>.

Option Compare Database

Option Explicit

'vxl constants mimic Excel defined constants so as not to require a reference to MS Excel, while retaining code readability

'"vxl" replaces "xl" for "virtual Excel" and to avoid over-riding actual Excel enumerations in the event that

'a reference to Excel is added to this application at some point in the future

Public Enum vxlExcelConstants

 vxlDelimited = 1

 vxlDoubleQuote = 1

 vxlCSV = 6

 vxlUp = -4162

 vxlTypePDF = 0 'speficies export to PDF

 vxlQualityMinimum = 1 'specifies minimum quality (smaller file size for email, probably not going to be printed)

 vxlMinimized = -4140 'Excel window minimized

 vxlMaximized = -4137 'Excel window maximized

 vxlDown = -4121 'Excel xlDown

 vxlFormatFromLeftOrAbove = 0 'Excel xlFormatFromLeftOrAbove

 vxlOpenXMLWorkbook = 51 'file format for Save As Excel Workbook; xlOpenXMLWorkbook

 vxlOpenXMLWorkbookMacroEnabled = 52 'file format for Macro Enabled workbook; xlOpenXMLWorkbookMacroEnabled

End Enum

'standard file extensions for Excel files

Public Const vxlExcelStandardFileExtension = ".xlsx" 'standard Excel file extension

Public Const vxlExcelCSVFileExtension = ".csv" 'CSV file extenstion

http://www.didjiman.com/business/cv-swareVBA.htm

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 53 of 85

Public Const vxlExcelMacroEnabledFileExtension = ".xlsm" 'Excel macro-enabled file extension

'

'

Public Function XL_GetNewInstance(ByRef XLHandle As Object, _

 Optional WindowStyle As vxlExcelConstants = vxlMinimized) As Boolean

 'presumes XLHandle is an uninitialized object variable

 'opens an instance of MS Excel assigned to XLHandle; returns False if operation fails, True otherwise

 'written to avoid requiring a reference to the MS Excel object library

 Dim MSExcel As Object

 XL_GetNewInstance = False 'presume failure

 'create a new instance of MS Excel

 On Error GoTo UtterFailure

 Set MSExcel = CreateObject("Excel.Application") 'runtime error 429 if this line fails

 MSExcel.Visible = True 'make the new instance visible

 MSExcel.Application.WindowState = WindowStyle 'set whether window is maximized/minimized

 Set XLHandle = MSExcel

 XL_GetNewInstance = True

 Exit Function

UtterFailure:

 MsgBox prompt:="Unable to create an instance of MS Excel." & vbNewLine & vbNewLine & _

 Err.Number & ": " & Err.Description, _

 Buttons:=vbExclamation, Title:=CurrentProject.Name

End Function

Public Sub XL_CloseInstance(ByRef XLHandle As Object, bSave As Boolean)

 'presumes XLHandle is initialized as an instance of MS Excel

 'closes the instance, with or without saving all workbooks, depending on value of bSave

 'written to avoid requiring a reference to the MS Excel object library

 Dim k As Long

 Dim wrkBook As Object

 With XLHandle

 For Each wrkBook In .WorkBooks 'close all workbooks in the instance

 wrkBook.Close SaveChanges:=bSave

 Next

 End With

 XLHandle.Quit

 Set XLHandle = Nothing

End Sub

Public Sub XL_WindowMaximize(ByRef XLHandle As Object)

 'maximize the instance window

 'written to avoid requiring a reference to the MS Excel object library

 XLHandle.Application.WindowState = vxlMaximized

End Sub

Public Sub XL_WindowMinimize(ByRef XLHandle As Object)

 'minimize the instance window

 'written to avoid requiring a reference to the MS Excel object library

 XLHandle.Application.WindowState = vxlMinimized

End Sub

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 54 of 85

Public Sub XLWrkBk_Open(ByRef XLHandle As Object, sFileName As String)

 'open a workbook

 'XLHandle is presumed to be an initialized reference to an MS Excel reference

 'sFileName is a workbook file name, with a fully qualified path

 'written to avoid requiring a reference to the MS Excel object library

 XLHandle.WorkBooks.Open Filename:=sFileName

End Sub

Public Function XLWrkBk_OpenCSV(ByRef XLHandle As Object, strSourceName As String) As String

 'presumes XLHandle is initialized as an instance of MS Excel

 'opens a workbook from a CSV file specified by strSourceName

 'returns the name of the new worksheet

 'written to avoid requiring a reference to the MS Excel object library

 With XLHandle

 .WorkBooks.OpenText Filename:=strSourceName, _

 Origin:=65001, _

 StartRow:=1, _

 DataType:=vxlDelimited, _

 TextQualifier:=vxlDoubleQuote, _

 ConsecutiveDelimiter:=False, _

 Tab:=True, _

 Semicolon:=False, _

 Comma:=True, _

 Space:=False, _

 Other:=False, _

 FieldInfo:=Array(Array(1, 1), Array(2, 1)), _

 TrailingMinusNumbers:=True

 XLWrkBk_OpenCSV = .ActiveWorkbook.ActiveSheet.Name

 End With

End Function

Public Function XL_ListWorkbooks(ByRef XLHandle As Object) As Variant

 'Returns an array of strings containing the name of each workbook opened in an instance of Excel

 'Returns an empty string if no workbooks are open in the Excel instance

 'XLHandle is a reference to an initialized instance of Excel

 Dim WrkBks() As String

 Dim objWrkBk As Object

 Dim k As Long

 If XLHandle.WorkBooks.Count = 0 Then

 XL_ListWorkbooks = ""

 Else

 ReDim WrkBks(0 To XLHandle.WorkBooks.Count - 1)

 k = 0

 For Each objWrkBk In XLHandle.WorkBooks

 WrkBks(k) = objWrkBk.Name

 k = k + 1

 Next

 XL_ListWorkbooks = WrkBks

 End If

End Function

Public Function XL_ListWorkSheets(ByRef XLHandle As Object, sWrkBkName As String) As Variant

 'Returns an array of strings containing the name of each worksheet in a specified workbook

 'Returns an empty string if there are no worksheets in the workbook

 'XLHandle is a reference to an initialized instance of Excel

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 55 of 85

 'sWrkBkName is a string specifying the workbook whose worksheets are to be listed

 Dim WrkShts() As String

 Dim objWrkSht As Object

 Dim k As Long

 If XLHandle.WorkBooks(sWrkBkName).WorkSheets.Count = 0 Then

 XL_ListWorkSheets = ""

 Else

 ReDim WrkShts(0 To XLHandle.WorkBooks(sWrkBkName).WorkSheets.Count - 1)

 k = 0

 For Each objWrkSht In XLHandle.WorkBooks(sWrkBkName).WorkSheets

 WrkShts(k) = objWrkSht.Name

 k = k + 1

 Next

 XL_ListWorkSheets = WrkShts

 End If

End Function

Public Sub XLWorkSheet_Rows_Delete(ByRef XLHandle As Object, sWorkSheet As String, iRowStart As Long, iRowEnd As Long)

 'XLHandle is presumed to be an initialized instance of MS Excel

 'deletes rows starting from iRowStart and continuing through iRowEnd on the worksheet named sWorkSheet

 'written to avoid requiring a reference to the MS Excel object library

 With XLHandle

 .WorkSheets(sWorkSheet).Rows(iRowStart & ":" & iRowEnd).Select

 .Selection.Delete

 End With

End Sub

Public Sub XLWorkSheet_Rows_Insert(ByRef XLHandle As Object, sWorkSheet As String, iRowStart As Long, iRowEnd As Long)

 'XLHandle is presumed to be an initialized instance of MS Excel

 'sWorksheet is the name of the worksheet where rows are to be inserted

 'iRowEnd is the end of the selection; iRowStart is the beginning of the selection

 'inserts rows equivalent to the number of selected rows.

 'rows are inserted at the end of the selection

 'written to avoid requiring a reference to the MS Excel object library

 With XLHandle

 .WorkSheets(sWorkSheet).Rows(iRowStart & ":" & iRowEnd).Select

 .Selection.Insert Shift:=vxlDown, CopyOrigin:=vxlFormatFromLeftOrAbove

 End With

End Sub

Public Sub XLActiveWorkbook_SaveAs_CSV(XLHandle As Object, sFileName As String)

 'XLHandle is presumed to be an initialized instance of MS Excel

 'saves the active workbook as a CSV file to the specified filename and path

 'sFileName is presumed to include a fully qualified path

 'NOTE: the file name is tested and modified to ensure the correct file extension for the new file

 ' no attempt is made to replace an incorrect file extension, the correct extension is simply added to sFileName

 'NOTE: Only the active worksheet is saved into the CSV file, as happens when interactively saving as CSV in Excel

 'NOTE: After performing the Save As to CSV, the open workbook is the new CSV file.

 'written to avoid requiring a reference to the MS Excel object library

 If Right(sFileName, Len(vxlExcelCSVFileExtension)) <> vxlExcelCSVFileExtension Then

 'no file extension, or not the correct file extension, append the correct file extension

 sFileName = sFileName & vxlExcelCSVFileExtension

 End If

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 56 of 85

 XLHandle.ActiveWorkbook.SaveAs Filename:=sFileName, FileFormat:=vxlCSV, CreateBackup:=False

End Sub

Public Sub XLActiveWorkbook_SaveAs_XLSX(XLHandle As Object, sFileName As String)

 'XLHandle is presumed to be an initialized instance of MS Excel

 'saves the active workbook as an XLSX file to the specified filename and path

 'sFileName is presumed to include a fully qualified path

 'NOTE that the file name is tested and modified to ensure the correct file extension for the new file

 ' no attempt is made to replace an incorrect file extension, the correct extension is simply added to sFileName

 'written to avoid requiring a reference to the MS Excel object library

 If Right(sFileName, Len(vxlExcelStandardFileExtension)) <> vxlExcelStandardFileExtension Then

 'no file extension, or not the correct file extension, append the correct file extension

 sFileName = sFileName & vxlExcelStandardFileExtension

 End If

 XLHandle.ActiveWorkbook.SaveAs Filename:=sFileName, FileFormat:=vxlOpenXMLWorkbook, CreateBackup:=False

End Sub

Public Sub XLActiveWorkbook_SaveAs_XLSM(XLHandle As Object, sFileName As String)

 'XLHandle is presumed to be an initialized instance of MS Excel

 'saves the active workbook as a XLSM (macro enabled) file to the specified filename and path

 'sFileName is presumed to include a fully qualified path

 'NOTE that the file name is tested and modified to ensure the correct file extension for the new file

 ' no attempt is made to replace an incorrect file extension, the correct extension is simply added to sFileName

 'written to avoid requiring a reference to the MS Excel object library

 If Right(sFileName, Len(vxlExcelMacroEnabledFileExtension)) <> vxlExcelMacroEnabledFileExtension Then

 'no file extension, or not the correct file extension, append the correct file extension

 sFileName = sFileName & vxlExcelMacroEnabledFileExtension

 End If

 XLHandle.ActiveWorkbook.SaveAs Filename:=sFileName, FileFormat:=vxlOpenXMLWorkbookMacroEnabled, CreateBackup:=False

End Sub

Public Sub XL_PrintWorkSheetAs_PDF(ByRef XLHandle As Object, sSheet As String, sOutName As String)

 'does an "export" of the named sheet to a PDF file.

 'the worksheet is presumed to have already had its margins, print area, etc. setup for printing.

 'XLHandle is presumed to be an initialized reference to an MS Excel instance

 'sSheet is the name of the worksheet in the current workbook to be printed

 'sOutName is the file name of the file to be written. sOutName is presumed to include a fully qualified path.

 'the constants used are declared in this module

 'NOTE: the output name should omit any file extension, Excel's ExportAsFixedFormat method adds the appropriate file extension.

 'written to avoid requiring a reference to the MS Excel object library

 With XLHandle.ActiveWorkbook.Sheets(sSheet)

 .ExportAsFixedFormat Type:=vxlTypePDF, _

 Filename:=sOutName, _

 Quality:=vxlQualityMinimum, _

 IncludeDocProperties:=False, _

 IgnorePrintAreas:=False, _

 OpenAfterPublish:=False

 End With

End Sub

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 57 of 85

MS Word: ofcApp_Word

This section contains the entirety of the ofcApp_Word module. If you use this code in your own applications, you must keep the copyright and license

notices intact, per the GNU Lesser General Public License (pg. 75) and the GNU General Public License (pg. 78). This is not public domain software; it is
licensed to you at no cost.

'COPYRIGHT NOTICE

'THIS VBA MODULE IS COPYRIGHT 1997-2017 BY MATTHEW S. HARRIS. All Rights Reserved.

'You can contact Matthew S. Harris at matthew@didjiman.com

'Code Version: v2017-05

'COPYING PERMISSIONS

'The MS Office Automation Code Library is free software: you can redistribute it and/or modify

'it under the terms of the GNU Lesser General Public License as published by

'the Free Software Foundation, either version 3 of the License, or any later version.

'This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

'without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

'See the GNU Lesser General Public License for more details.

'You should have received a copy of the GNU General Public License

'along with this module. If not, see <http://www.gnu.org/licenses/>.

Option Compare Database

Option Explicit

'vwd constants mimic Word defined constants so as not to require a reference to MS Word, while retaining code readability

'"vwd" replaces "wd" for "virtual Word" and to avoid over-riding actual Word enumerations in the event that

'a reference to Word is added to this application at some point in the future

Public Enum vwdConstants

 'from WdMergeSubType enumeration

 vwdMergeSubTypeAccess = 1 'wdMergeSubTypeAccess: mail-merge sub-type

 vwdMergeSubTypeOther = 0

 'from WdMailMergeDestination enumeration

 vwdSendToNewDocument = 0 'wdSendToNewDocument: mail-merge sent to new document

 vwdDefaultFirstRecord = 1 'wdDefaultFirstRecord: mail-merge starting record

 vwdDefaultLastRecord = -16 'wdDefaultLastRecord: mail-merge last record

 vwdSaveChanges = -1 'wdSaveChanges: argument indicating changes should be saved

 vwdDoNotSaveChanges = 0 'wdDoNotSaveChanges: argument indicating changes should NOT be saved

 vwdPromptToSaveChanges = -2 'wdPromptToSaveChanges: prompt user whether to save changes

 vwdFormatXMLDocument = 12 'wdFormatXMLDocument: specifies MS Word .docx document format for Save As

 vwdNewBlankDocument = 0 'wdNewBlankDocument: specified a blank document when creating new

 'from WdWindowState enumeration

 vwdWindowStateMinimize = 2 'wdWindowStateMinimize: specify a minimized window state

 vwdWindowStateMaximize = 1 'wdWindowStateMaximize: specify a maximized window state

 vwdOpenFormatAuto = 0

 'from WdUnit enumeration

 vwdCharacter = 1 'wdCharacter: for Unit argument, characters

 vwdWord = 2 'wdWord: for Unit argument, words

 vwdSentence = 3 'wdSentence: for Unit argument, sentence

 vwdParagraph = 4 'wdParagraph: for Unit argument, paragraph

 vwdLine = 5 'wdLine: for Unit argument, lines

 vwdStory = 6 'wdStory: unit for a Document Story

 'from WdGoToItem enumeration -- for Selection.GoTo what argument

 vwdGoToBookmark = -1 'wdGoToBookmark: navigate to bookmark

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 58 of 85

End Enum

'

Public Function Word_GetNewInstanceHandle(ByRef WDHandle As Object, _

 Optional WindowStyle As vwdConstants = vwdWindowStateMinimize) As Boolean

 'presumes WDHandle is an uninitialized object variable

 'opens an instance of MS Word assigned to WDHandle

 'Returns False if operation fails, True otherwise

 'written to avoid requiring a reference to the MS Word object library

 Dim MSWord As Object

 Word_GetNewInstanceHandle = False 'presume failure

 'create a new instance of MS Word

 On Error GoTo UtterFailure

 Set MSWord = CreateObject("Word.Application") 'runtime error 429 if this line fails

 MSWord.Visible = True

 MSWord.Application.WindowState = WindowStyle 'specified by caller, or minimized by default

 Set WDHandle = MSWord

 Word_GetNewInstanceHandle = True

 Exit Function

UtterFailure:

 MsgBox prompt:="Unable to create an instance of MS Word." & vbNewLine & vbNewLine & _

 Err.Number & ": " & Err.Description, _

 Buttons:=vbCritical, Title:=CurrentProject.Name

End Function

Public Sub Word_CloseInstanceHandle(ByRef WDHandle As Object, bSave As Boolean)

 'presumes WDHandle is an initialized instance of MS Word

 'bSave controls whether any documents in the Word instance are saved (bSave = True) or not (bSave = False) when closed.

 'written to avoid requiring a reference to the MS Word object library

 Dim wrdDoc As Object

 On Error Resume Next

 With WDHandle

 For Each wrdDoc In .Documents 'close all documents in the instance

 wrdDoc.Close SaveChanges:=bSave

 Next

 End With

 WDHandle.Quit

 Set WDHandle = Nothing

End Sub

Public Function wdDoc_GetExistingDocHandle(ByRef DocHandle As Object, ByRef WDHandle As Object, ByVal sDocName As String) As Boolean

 'presumes WDHandle is an initialized Word instance, and docHandle is an uninitialized Word document

 'opens the document specified by sDocName, which is presumed to contain a fully qualified path

 'written to avoid requiring a reference to the MS Word object library

 Dim wrdDoc As Object

 wdDoc_GetExistingDocHandle = False 'presume failure

 On Error GoTo UtterFailure

 Set wrdDoc = WDHandle.Documents.Open(Filename:="""" & sDocName & """", ConfirmConversions:=False, ReadOnly:=False, _

 AddToRecentFiles:=False, Revert:=False, Format:=0, XMLTransform:="")

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 59 of 85

 Set DocHandle = wrdDoc

 wdDoc_GetExistingDocHandle = True

 Exit Function

UtterFailure:

 MsgBox prompt:="Unable to Open Document File:" & vbNewLine & sDocName & "." & vbNewLine & vbNewLine & _

 Err.Number & ": " & Err.Description, _

 Buttons:=vbCritical, Title:=CurrentProject.Name

End Function

Public Function wdDoc_GetNewDocHandle(ByRef DocHandle As Object, ByRef WDHandle As Object) As Boolean

 'presumes WDHandle is an initialized Word instance, and docHandle is an uninitialized Word document

 'creates a new document

 'written to avoid requiring a reference to the MS Word object library

 Dim wrdDoc As Object

 wdDoc_GetNewDocHandle = False 'presume failure

 On Error GoTo UtterFailure

 Set wrdDoc = WDHandle.Documents.Add(DocumentType:=vwdNewBlankDocument)

 Set DocHandle = wrdDoc

 wdDoc_GetNewDocHandle = True

 Exit Function

UtterFailure:

 MsgBox prompt:="Unable to Create New Word Document!" & vbNewLine & vbNewLine & _

 Err.Number & ": " & Err.Description, _

 Buttons:=vbCritical, Title:=CurrentProject.Name

End Function

Public Sub wdDoc_CloseDocument(ByRef DocHandle As Object, bSave As Boolean)

 'presumes docHandle is an initialized reference to a Word document.

 'bSave controls whether the document saved (bSave = True) or not (bSave = False) when closed.

 'written to avoid requiring a reference to the MS Word object library

 On Error Resume Next

 If bSave Then

 DocHandle.Close vwdSaveChanges

 Else

 DocHandle.Close vwdDoNotSaveChanges

 End If

End Sub

Public Sub wdDoc_SaveAs(ByRef DocHandle As Object, sDocName As String)

 'do a Save As operation on a document.

 'presumes docHandle is an initialized reference to a Word document.

 'sDocName must be a fully qualified path

 'NOTE if sDocName does not include a file extension, the ".docx" is added automatically

 'NOTE if sDocName does include a file extension, that extension is used

 'NOTE that this procedure will over-write existing files without warning

 'written to avoid requiring a reference to the MS Word object library

 'NOTE conditional compilation to use the most recent version of the SaveAs method

 #If vba7 Then

 DocHandle.SaveAs2 Filename:=sDocName, FileFormat:=vwdFormatXMLDocument

 #Else

 DocHandle.SaveAs Filename:=sDocName, FileFormat:=vwdFormatXMLDocument

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 60 of 85

 #End If

End Sub

Public Sub Word_WindowMaximize(ByRef WDHandle As Object)

 'maximize the instance window

 'WDHandle is an intialized Word instance

 'written to avoid requiring a reference to the MS Word object library

 WDHandle.Application.WindowState = vwdWindowStateMaximize

End Sub

Public Sub Word_WindowMinimize(ByRef WDHandle As Object)

 'minimize the instance window

 'WDHandle is an intialized Word instance

 'written to avoid requiring a reference to the MS Word object library

 WDHandle.Application.WindowState = vwdWindowStateMinimize

End Sub

Public Sub wdDoc_SendText2Document(ByRef DocHandle As Object, ByRef WDHandle As Object, ParamArray xfrText() As Variant)

 'send the xfrText strings into an existing Word document, each parameter array item is separated with a line break

 'docHandle is presumed to be an initialized Word Document.

 'WDHandle is presumed to be an initialized Word application.

 'presumably, each item in xfrText has already been formatted.

 'written to avoid requiring a reference to the MS Word object library

 Dim k As Integer

 DocHandle.Activate 'ensure the target document is active

 With WDHandle

 'insert our content into the document

 For k = LBound(xfrText) To UBound(xfrText)

 .Selection.TypeText Text:=xfrText(k)

 .Selection.TypeParagraph

 Next k

 End With

End Sub

Public Function wdDoc_SendText2NewDocument(ByRef DocHandle As Object, _

 ByRef WDHandle As Object, _

 ParamArray xfrText() As Variant) As Boolean

 'returns True if an instance to Word and a new document are successfully created, False otherwise

 'send the xfrText strings into a new Word document, each parameter array item is separated with a line break

 'presumably, each item in xfrText has already been formatted.

 'docHandle is used to return a reference to the new document

 'WDHandle is used to return a reference to the Word instance in which the new document was created.

 'NOTE: docHandle and WDHandle should be UN-initialized objects.

 'NOTE: this procedure sets WDHandle to reference the instance of Word that the new document is created in.

 'NOTE: this procedure sets docHandle to reference the new document created by this procedure.

 'written to avoid requiring a reference to the MS Word object library

 Dim k As Integer

 On Error GoTo UtterFailure

 Set WDHandle = CreateObject("Word.Application") 'runtime error 429 if this line fails

 'create a new document within word -- it becomes Word's default selected document

 Set DocHandle = WDHandle.Documents.Add

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 61 of 85

 With WDHandle

 'insert our content into the document

 For k = LBound(xfrText) To UBound(xfrText)

 .Selection.TypeText Text:=xfrText(k)

 .Selection.TypeParagraph

 Next k

 .Visible = True 'make Word visible (not visible by default)

 .Activate 'give Word the focus

 End With

 wdDoc_SendText2NewDocument = True 'successful if we get here

 Exit Function 'skip over remaining error code

UtterFailure:

 wdDoc_SendText2NewDocument = False

 MsgBox prompt:="Unable to create an instance of MS Word." & vbNewLine & vbNewLine & _

 Err.Number & ": " & Err.Description, _

 Title:=CurrentProject.Name, _

 Buttons:=vbExclamation + vbOKOnly

End Function

Public Sub wdDoc_SendEnvelope(strTo As String, strReturn As String, bAutoPrint As Boolean)

 'Create a new document in Word, and invoke the Envelope.PrintOut method of the document to print an envelope.

 'strTo is the destination address, presumed to be formatted with line-feeds

 'strReturn is the return address, presumed to be formatted with line-feeds

 'If bAutoPrint is true, print the envelope and close the Word document and instance without saving changes.

 'If bAutoPrint is false, leave the Word document instance open.

 'Written to avoid requiring a reference to the MS Word object library.

 Dim MSWord As Object

 Dim wdDoc As Object

 'create a Word instance - use existing instance, if possible

 On Error GoTo CreateNewInstance 'runtime error if no existing instance

 Set MSWord = GetObject(Class:="Word.Application")

 GoTo InsertDocument 'skip over creating an instance if we get here

CreateNewInstance:

 'runtime error on GetObject implies a need to create a new instance

 On Error GoTo 0 'clear all previous error traps when we get here

 On Error GoTo UtterFailure 'install a new error trap to cover a failure of CreateObject

 Set MSWord = CreateObject("Word.Application") 'runtime error 429 if this line fails

InsertDocument:

 On Error GoTo 0 'clear all error traps -- goto jumps might get us here without prev clearing

 'create a new document within word -- it becomes Word's default selected document

 Set wdDoc = MSWord.Documents.Add

 With wdDoc

 'set up the envelope

 .envelope.Insert Address:=strTo, ReturnAddress:=strReturn

 If bAutoPrint Then

 'invoke the envelope printer and close Word document without saving

 .envelope.PrintOut

 .Close vwdDoNotSaveChanges

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 62 of 85

 Else

 MSWord.Visible = True

 MSWord.Activate

 End If

 End With

 Set wdDoc = Nothing 'dispose

 Set MSWord = Nothing 'dispose pointer

 Exit Sub 'skip over remaining error code

UtterFailure:

 MsgBox prompt:="Unable to create an instance of MS Word." & vbNewLine & vbNewLine & _

 Err.Number & ": " & Err.Description, _

 Title:=CurrentProject.Name, _

 Buttons:=vbExclamation + vbOKOnly

End Sub

Sub wdDoc_Insert_ImageFile(WDHandle As Object, DocHandle As Object, _

 sBookMarkName As String, sFileName As String)

 'inserts an image file into a Word document at a position marked with a bookmark

 'WDHandle is an initialized instance of Word

 'DocHandle is an initialized Word Document

 'sBookMarkName is a string containing the name of a bookmark in the document where the image is to be inserted

 'sFileName is a string containing the name and fully-qualified path of the image file to insert

 DocHandle.Activate

 With WDHandle.Selection

 .GoTo What:=vwdGoToBookmark, Name:=sBookMarkName 'go to bookmark

 .InlineShapes.AddPicture Filename:=sFileName, _

 LinkToFile:=False, SaveWithDocument:=True

 End With

End Sub

Public Function MailMerge_WriteOutputFile_AsText(sFileName As String, _

 sRecSource As String) As Boolean

 'Write an external comma-delimited text file formatted for a generic name and address-only mailing.

 'Return True if the file is successfully written, False otherwise

 'sFileName is a fully-qualified path and filename to which the output is written.

 'sRecSource is the record source for the output. sRecSource may be a table name, query name,

 ' or an SQL statement.

 'NOTE: Adds the .txt file extension if not already present.

 'NOTE: uses the number and names of fields in sRecSource to create the column headings in the output file.

 Dim strSQL As String

 Dim fHnd As Long 'text file handle

 Dim rst As DAO.Recordset 'the data we'll be writing to the text file

 Dim k As Long

 Dim s As String

 On Error GoTo BadStuff

 MailMerge_WriteOutputFile_AsText = True 'presume success

 'open a recordset for the list

 Set rst = CurrentDb.OpenRecordset(sRecSource)

 If rst.RecordCount > 0 Then 'only process if there are records

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 63 of 85

 'ensure filename extension is .txt

 If StrComp(Right(sFileName, 4), ".txt", vbTextCompare) <> 0 Then sFileName = sFileName & ".txt"

 fHnd = FreeFile 'get a free file handle

 Open sFileName For Output As fHnd 'open the output text file

 'write the row for column headings -- Word uses the column headings to match up merge fields

 s = ""

 For k = 0 To rst.Fields.Count - 1

 s = s & """" & rst.Fields(k).Name & ""","

 Next

 s = Left(s, Len(s) - 1) 'will have an extra "," at the end

 Print #fHnd, s

 'write out each record

 rst.MoveFirst

 Do While Not rst.EOF

 s = ""

 For k = 0 To rst.Fields.Count - 1

 s = s & """" & Nz(rst.Fields(k).Value, "") & ""","

 Next

 s = Left(s, Len(s) - 1) 'will have an extra "," at the end

 Print #fHnd, s

 rst.MoveNext

 Loop

 Close #fHnd 'close the output file, we're done

 Else

 MsgBox prompt:="No mailing addresses!", _

 Buttons:=vbExclamation, Title:=CurrentProject.Name

 End If

 rst.Close

 Exit Function 'skip error-handling code

BadStuff:

 MailMerge_WriteOutputFile_AsText = False

 MsgBox prompt:="Error: " & Err.Number & vbNewLine & Err.Description & vbNewLine & _

 "Occurred during execution of 'MailMerge_WriteOutputFile_AsText'", _

 Buttons:=vbCritical, Title:=CurrentProject.Name

End Function

Public Sub MailMerge_SendMailMerge2Word_FromText(sMergeFile As String, sMergeDoc As String)

 'Open an MS Word document (presumed to be a mail merge document) and execute a mail-merge operation.

 'sMergeFile is the name of the mail-merge data file (presumed to be a comma-delimited text file)

 ' sMergeFile must contain the data file name and a fully qualified path.

 'sMergeDoc is the name of the MS Word document in which the mail-merge will occur.

 ' sMergeDoc must contain the document file name and a fully qualified path.

 Dim wrdApp As Object

 Dim wrdDoc As Object

 'get a handle to an instance of a Word document -- sMergeDoc

 If Word_GetNewInstanceHandle(wrdApp) Then 'successfully got handle

 If wdDoc_GetExistingDocHandle(wrdDoc, wrdApp, sMergeDoc) Then 'open the mail merge document successfully

 'apply the code to make the mailmerge

 MailMerge_Execute_FromText wrdDoc, sMergeFile

 'close handle, no save changes; this leaves the completed merge open

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 64 of 85

 wdDoc_CloseDocument wrdDoc, False

 wrdApp.Activate

 Else

 wdDoc_CloseDocument wrdApp, False

 MsgBox prompt:="ERROR: Attempt to make Mail Merge to '" & sMergeDoc & "' from '" & sMergeFile & "' failed.", _

 Buttons:=vbCritical, Title:=CurrentProject.Name

 End If

 End If

End Sub

Public Sub MailMerge_Execute_FromText(ByRef wrdDoc As Object, sData As String)

 'presumes wrdDoc is an initialized Word document object

 'presumes the mail source is a CSV (comma separated value) file

 'sData is a fully qualified path name pointing to the mail merge data source

 'written to avoid requiring a reference to the MS Word object library

 wrdDoc.mailmerge.OpenDataSource Name:=sData, _

 ConfirmConversions:=False, _

 ReadOnly:=False, _

 LinkToSource:=True, _

 AddToRecentFiles:=False, _

 PasswordDocument:="", _

 PasswordTemplate:="", _

 WritePasswordDocument:="", _

 WritePasswordTemplate:="", _

 Revert:=False, _

 Format:=vwdOpenFormatAuto, _

 Connection:="", _

 SQLStatement:="", _

 SQLStatement1:="", _

 SubType:=vwdMergeSubTypeOther

 With wrdDoc.mailmerge

 .Destination = vwdSendToNewDocument

 .SuppressBlankLines = True

 .DataSource.FirstRecord = vwdDefaultFirstRecord

 .DataSource.LastRecord = vwdDefaultLastRecord

 .Execute Pause:=False

 End With

End Sub

Public Function MailMerge_WriteOutputFile_AsDB(sFileName As String, _

 sRecSource As String, _

 sTableName As String) As Boolean

 'Write an external .accdb file formatted for a generic name and address-only mailing.

 'Return True if the file is successfully written, False otherwise

 'sFileName is a fully-qualified path and filename to which the output is written.

 'sRecSource is the record source for the output. sRecSource may be a table name, query name,

 ' or an SQL statement.

 'sTableName is the name of the table in which the mailmerge data is inserted.

 'NOTE: Adds the .accdb file extension if not already present.

 'NOTE: uses the number and names of fields in sRecSource to create the TableDef in the output file.

 Dim rstSrc As DAO.Recordset 'the data we'll be writing to the .accdb

 Dim rstDest As DAO.Recordset 'the destination of the data we're writing out

 Dim dbX As DAO.Database 'external database

 Dim tblX As DAO.TableDef

 Dim k As Long

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 65 of 85

 On Error GoTo BadStuff

 MailMerge_WriteOutputFile_AsDB = True 'presume success

 'open a recordset for the list

 Set rstSrc = CurrentDb.OpenRecordset(sRecSource)

 If rstSrc.RecordCount > 0 Then 'only process if there are records

 'ensure filename extension is .accdb

 If StrComp(Right(sFileName, 6), ".accdb", vbTextCompare) <> 0 Then sFileName = sFileName & ".accdb"

 Set dbX = DBEngine.Workspaces(0).CreateDatabase(sFileName, dbLangGeneral) 'create an external db

 Set tblX = dbX.CreateTableDef(sTableName) 'create TableDef in the external db

 For k = 0 To rstSrc.Fields.Count - 1 'create fields for output DB

 tblX.Fields.Append tblX.CreateField(rstSrc.Fields(k).Name, rstSrc.Fields(k).Type, rstSrc.Fields(k).Size)

 Next

 dbX.TableDefs.Append tblX 'append the table def

 'iterate the source recordset, inserting records into the destination table

 Set rstDest = dbX.OpenRecordset(sTableName)

 rstSrc.MoveFirst

 Do While Not rstSrc.EOF

 rstDest.AddNew

 For k = 0 To rstSrc.Fields.Count - 1

 If Nz(rstSrc.Fields(k), "") <> "" Then

 'insert field values for non-blank fields only

 rstDest.Fields(k) = rstSrc.Fields(k)

 End If

 Next

 rstDest.Update 'save new records in destination

 rstSrc.MoveNext

 Loop

 rstDest.Close 'close destination recordset

 dbX.Close 'close the external .mdb

 Else

 MsgBox prompt:="No mailing addresses!", _

 Buttons:=vbExclamation, Title:=CurrentProject.Name

 End If

 rstSrc.Close

 Exit Function 'skip error-handling code

BadStuff:

 MsgBox prompt:="Error: " & Err.Number & vbNewLine & Err.Description & vbNewLine & _

 "Occurred during execution of 'MailMerge_WriteOutputFile_AsDB'", _

 Buttons:=vbCritical, Title:=CurrentProject.Name

 MailMerge_WriteOutputFile_AsDB = False

End Function

Public Sub MailMerge_SendMailMerge2Word_FromDB(sMergeFile As String, _

 sMergeDoc As String, _

 sTableName As String)

 'Open an MS Word document (presumed to be a mail merge document) and execute a mail-merge operation.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 66 of 85

 'sMergeFile is the name of the mail-merge data file (presumed to be an MS Access .accdb file)

 ' sMergeFile must contain the data file name and a fully qualified path.

 'sMergeDoc is the name of the MS Word document in which the mail-merge will occur.

 ' sMergeDoc must contain the document file name and a fully qualified path.

 'sTableName is the name of the table in sMergeFile from which mail-merge data is obtained.

 'code is written specifically to avoid requiring a reference to the Word object library

 Dim wrdApp As Object

 Dim wrdDoc As Object

 'get a handle to an instance of a Word document -- sMergeDoc

 If Word_GetNewInstanceHandle(wrdApp) Then 'successfully got handle

 If wdDoc_GetExistingDocHandle(wrdDoc, wrdApp, sMergeDoc) Then 'open the mail merge document successfully

 'apply the code to make the mailmerge

 MailMerge_Execute_FromDB wrdDoc, sMergeFile, sTableName

 'close handle, no save changes; this leaves the completed merge open

 wdDoc_CloseDocument wrdDoc, False

 wrdApp.Activate

 Else

 ofcApp_Word.wdDoc_CloseDocument wrdApp, False

 MsgBox prompt:="ERROR: Attempt to make Mail Merge to '" & sMergeDoc & "' from '" & sMergeFile & "' failed.", _

 Buttons:=vbCritical, Title:=CurrentProject.Name

 End If

 End If

End Sub

Public Sub MailMerge_Execute_FromDB(ByRef wrdDoc As Object, sData As String, sTableName As String)

 'presumes wrdDoc is an initialized Word document object

 'wrdDoc is a reference to an initialized Word document.

 'sData is a fully qualified path name pointing to the mail merge data source

 'sTableName is the name of the table from which mail-merge data is taken.

 'written to avoid requiring a reference to the MS Word object library

 wrdDoc.mailmerge.OpenDataSource _

 Name:=sData, _

 ConfirmConversions:=False, _

 ReadOnly:=False, _

 LinkToSource:=True, _

 AddToRecentFiles:=False, _

 PasswordDocument:="", _

 PasswordTemplate:="", _

 WritePasswordDocument:="", _

 WritePasswordTemplate:="", _

 Revert:=False, _

 Format:=vwdOpenFormatAuto, _

 Connection:="TABLE " & sTableName, _

 SubType:=vwdMergeSubTypeAccess

 With wrdDoc.mailmerge

 .Destination = vwdSendToNewDocument

 .SuppressBlankLines = True

 With .DataSource

 .FirstRecord = vwdDefaultFirstRecord

 .LastRecord = vwdDefaultLastRecord

 End With

 .Execute Pause:=False

 End With

End Sub

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 67 of 85

MS Outlook: ofcApp_Outlook

This section contains the entirety of the ofcApp_Outlook module. If you use this code in your own applications, you must keep the copyright and license

notices intact, per the GNU Lesser General Public License (pg. 75) and the GNU General Public License (pg. 78). This is not public domain software; it is
licensed to you at no cost.

'COPYRIGHT NOTICE

'THIS VBA MODULE IS COPYRIGHT 2014-2017 BY MATTHEW S. HARRIS. All Rights Reserved.

'You can contact Matthew S. Harris at matthew@didjiman.com

'Code Version: v2017-05

'COPYING PERMISSIONS

'The MS Office Automation Code Library is free software: you can redistribute it and/or modify

'it under the terms of the GNU Lesser General Public License as published by

'the Free Software Foundation, either version 3 of the License, or any later version.

'This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

'without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

'See the GNU Lesser General Public License for more details.

'You should have received a copy of the GNU General Public License

'along with this module. If not, see <http://www.gnu.org/licenses/>.

Option Compare Database

Option Explicit

'vol constants mimic Outlook defined constants so no reference is required,

'while retaining code readability.

'"vol" replaces "ol" for "virtual Outlook" and to avoid over-riding actual

'Outlook enumerations in the event that a reference to Outlook is added

'to this application at some point in the future.

Enum vOutLookConstants

 volFolderSentMail = 5 'olFolderSentMail

 volFolderDisplayNormal = 0 'olFolderDisplayNormal

 volMailItem = 0 'olMailItem

 volWindowStateNormal = 2 'olNormalWindow

 volWindowStateMinimized = 1 'olMinimized

 volWindowStateMaximized = 0 'olMaximized

End Enum

'The MailAction enumeration is not part of Outlook,

'it is declared to specify the action taken with an

'e-mail in procedure arguments

Enum MyMailAction

 myMailActionSave = 0 'save email

 myMailActionSend = 1 'send email

 myMailActionDisplay = 2 'display email

End Enum

'

Public Function Outlook_GetNewInstanceHandle(ByRef OLHandle As Object, _

 Optional bDisplay As Boolean = False) As Boolean

 'presumes OLHandle is an uninitialized object variable

 'opens an instance of MS Outlook assigned to OLHandle; returns False if operation fails, True otherwise

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 68 of 85

 'bDisplay, if True, causes the MS Outlook instance to display in a normal window; minimized otherwise.

 'NOTE: the Window State constants for Outlook are: 0 = Maximized, 1 = Minimized, 2 = Normal Window

 'written to avoid requiring a reference to the MS Outlook object library

 Dim olNameSpace As Object

 Dim olFolder As Object

 Dim olExplorer As Object

 Outlook_GetNewInstanceHandle = False 'presume failure

 'create a new instance of MS Outlook

 On Error GoTo UtterFailure

 Set OLHandle = CreateObject("Outlook.Application") 'runtime error 429 if this line fails

 'must set name space, default folder, folder display, and activate the Explorer object

 Set olNameSpace = OLHandle.GetNamespace("MAPI")

 Set olFolder = olNameSpace.GetDefaultFolder(volFolderSentMail) ' 5 = olFolderSentMail

 Set olExplorer = OLHandle.Explorers.Add(olFolder, volFolderDisplayNormal) ' 0 = olFolderDisplayNormal

 olExplorer.Activate

 If bDisplay Then

 OLHandle.ActiveWindow.WindowState = volWindowStateNormal 'normal window

 Else

 OLHandle.ActiveWindow.WindowState = volWindowStateMinimized 'minimized window

 End If

 Outlook_GetNewInstanceHandle = True 'success if we get to here

 Exit Function 'skip error-handling code

UtterFailure:

 MsgBox prompt:="Unable to create an instance of MS Outlook." & vbNewLine & vbNewLine & _

 Err.Number & ": " & Err.Description, _

 Buttons:=vbCritical, Title:=CurrentProject.Name

End Function

Public Sub Outlook_CloseInstanceHandle(ByRef OLHandle As Object)

 'presumes OLHandle is an initialized instance of MS Outlook

 'written to avoid requiring a reference to the MS Outlook object library

 OLHandle.Quit

 Set OLHandle = Nothing

End Sub

Sub Outlook_CreateEMail(ByRef OLHandle As Object, _

 MailAction As MyMailAction, _

 sTo As String, _

 sSubject As String, _

 sBody As String, _

 Optional bIsHTML As Boolean = False, _

 Optional sCC As String = "", _

 Optional sBCC As String = "", _

 Optional sAttachments As Variant)

 'creates a new mail item, and performs the specified MailAction.

 'OLHandle is an initialized reference to an instance of MS Outlook

 'sAttachments is presumed to contain an array of strings for attachment files, if it is not missing.

 'written to avoid requiring a reference to the MS Outlook object library

 Dim OutMail As Object 'MailItem

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 69 of 85

 Dim k As Long 'loop variable

 Set OutMail = OLHandle.CreateItem(volMailItem) 'create new MailItem object

 With OutMail

 .to = sTo 'email address

 .CC = sCC 'CC addresses

 .BCC = sBCC 'BCC addresses

 .Subject = sSubject 'subject line

 If bIsHTML Then

 .HTMLBody = sBody 'HTML body text

 Else

 .Body = sBody 'plain text message body

 End If

 'add attachments

 If Not IsMissing(sAttachments) Then

 For k = LBound(sAttachments) To UBound(sAttachments)

 .Attachments.Add sAttachments(k)

 Next

 End If

 'perform the specified mail action

 Select Case MailAction

 Case myMailActionDisplay: .Display

 Case myMailActionSave: .Save

 Case myMailActionSend: .Send

 End Select

 End With

 Set OutMail = Nothing 'dispose object

End Sub

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 70 of 85

GNU Free Documentation License (FDL)
GNU Free Documentation License
Version 1.3, 3 November 2008
Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the
GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should
come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not
"Transparent" is called "Opaque".

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 71 of 85

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of
the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 72 of 85

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example,
statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 73 of 85

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise
combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the
individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate,
the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will
prevail.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 74 of 85

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any
later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can
be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides
prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor
Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with
a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this
MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 75 of 85

Software Licenses

All source code in this document is licensed according to the terms of the GNU LGPL and GNU GPL, following.

GNU Lesser General Public License (LGPL)
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License,
supplemented by the additional permissions listed below.

0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General
Public License.

"The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a
class defined by the Library is deemed a mode of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the
Combined Work was made is also called the "Linked Version".

The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for
portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility
programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility
(other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the
facility still operates, and performs whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms
of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros,
inline functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 76 of 85

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.
You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library
contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this
License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a
reference directing the user to the copies of the GNU GPL and this license document.

d) Do one of the following:

1) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and
under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified
Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.

2) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library
already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible
with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only
to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or
relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the
Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the
manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.
You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not
Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under
the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General
Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later
version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public
License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 77 of 85

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's
public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 78 of 85

GNU General Public License (GPL)

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all
its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain
responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received.
You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal
permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the
GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This
is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of
products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice
for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-
purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 79 of 85

TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be
individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy.
The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based on the Program.

To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable
copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer
network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays
an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees
may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.
The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified
for a particular programming language, one that is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major
Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major
essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the
object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 80 of 85

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This
License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if
the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may
convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it
unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected
by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7
apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4,
provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement
modifies the requirement in section 4 to "keep intact all notices".

c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore
apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that
do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are
not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and
its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 81 of 85

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding
Source fixed on a durable physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid
for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses
the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only
occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding
Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along
with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated
by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to
find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available
for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of
the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in
conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household
purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be
resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses
represent the only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute
modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that
the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction
in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work
that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the
network.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 82 of 85

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with
an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional
permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional
permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material)
supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed
by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as
different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and
authors.

All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part
of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license
document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the
terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to
those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements
apply either way.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 83 of 85

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void,
and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a
consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or
propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work,
subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging
organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also
receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.
A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed
is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that
would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer
for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an
express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 84 of 85

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of
charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a
manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual
knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would
infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a
patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of
one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in
connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March
2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to
you under applicable patent law.

12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further
conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the
GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the
part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network
will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any
later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of
acceptance of a version permanently authorizes you to choose that version for the Program.

MSH Library - MS Office Automation

Copyright 2014-2017 by Matthew S. Harris. All Rights Reserved. Page 85 of 85

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as
a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply
local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

